Sediment Testing at Tidal Locations

The Los Angeles County Department of Public Works conducted an assessment on February 2, 2025, to examine sediment at tidal locations impacted by wildfire debris and ash. The goal was to determine whether the sediment contained chemical substances at levels that would classify it as hazardous waste under State and Federal regulations.

Laboratory testing analyzed the sediment for a range of substances, including asbestos, heavy metals, dioxins, pesticides, petroleum hydrocarbons, and other potential contaminants. Results showed that most substances were not detected, with only minor traces found in limited instances. Importantly, none of the detected levels exceeded safety thresholds.

Based on these findings, the debris and ash in the tested tidal areas were determined to be safe for disposal in inert landfills. This assessment helps ensure that wildfire-related debris is managed responsibly while protecting coastal and environmental health.

Testing Locations:

Sediment Analytical Results Santa Monica Canyon Channel and Topanga Creek

		Location	Santa Monica	Topanga
	Sampl	e Identification	SM-1S	TB-1S
EPA Method	Analyte	Soil	02/02/25	02/02/25
Total Petroleum I	Hydrocarbons (TPH) (3 Analys	te Ranges Teste	d: Light, Medium, I	Heavy)
8015M	TPH-Heavy Hydrocarbons	mg/kg	8.8J	6.1J
Volatile Organic (Compounds (VOCs) (68 Analy	rtes Tested)		
8260B	Acetone	μg/kg	32J	200
8260B	2-Butanone	μg/kg	7.6J	59J
8260B	Benzene	μg/kg	4.1	21
8260B	Ethylbenzene	μg/kg	ND	1.0J
8260B	Toluene	μg/kg	2.0J	12
8260B	Xylenes	μg/kg	ND	3.4J
8260B	Napthalene	μg/kg	ND	0.9J
PAHs (Polycyclic	Aromatic Hydrocarbons) (18	Analytes Tested	d)	
8270C-SIM	1-Methynaphthalene	μg/kg	3.6J	ND
8270C-SIM	2-Methynaphthalene	μg/kg	4.2J	ND
8270C-SIM	Naphthalene	μg/kg	7.7J	ND
8270C-SIM	Phenanthrene	μg/kg	2.6J	ND
8270C-SIM	Fluoranthene	μg/kg	3.4J	ND
8270C-SIM	Pyrene	μg/kg	3.3J	ND
8270C-SIM	Benzo(a)anthracene	μg/kg	1.4J	ND
8270C-SIM	Chrysene	μg/kg	1.7J	ND
8270C-SIM	Benzo(b)fluoranthene	μg/kg	1.3J	ND
Semi-Volatile Org	janic Compounds (SVOCs) (7	2 Analytes Test	ed)	
8270C		mg/kg	ND	ND
Organochlorine F	Pesticides (20 Analytes Tested	d)		
8081A		μg/kg	ND	ND
Organophosphor	rus Pesticides (20 Analytes Te	ested)		
8141A		mg/kg	ND	ND
Chlorinated Herb	icides (10 Analytes Tested)			
8151A	2,4,5-T	μg/kg	6.0J	ND
Dioxins and Fura	ns (17 Analytes Tested)			
8290	2,3,7,8-TCDD	pg/g	0.768	ND
8290	1,2,3,6,7,8-HxCDD	pg/g	1.11J	1.03J
8290	1,2,3,7,8,9-HxCDD	pg/g	1.04J	1.09J
8290	1,2,3,4,6,7,8-HpCDD	pg/g	14.2	12.6
8290	OCDD	pg/g	124	136
8290	2,3,7,8-TCDF	pg/g	ND	0.501
8290	2,3,4,7,8-PeCDF	pg/g	ND	1.29J
8290	1,2,3,4,7,8-HxCDF	pg/g	ND	0.781J
8290	1,2,3,6,7,8-HxCDF	pg/g	ND	0.790J

8290	2,3,4,6,7,8-HxCDF	pg/g	ND	1.17J
8290	1,2,3,4,6,7,8-HpCDF	pg/g	2.40J	4.69
8290	OCDF	pg/g	7.14	6.98
Polychlorinat	ed Biphenyls (PCBs) (9 Analyte	s Tested)		
8082		μg/kg	ND	ND
Asbestos				
100.1		%	ND	ND
Hexavalent C	hromium			
218.6		mg/kg	ND	ND
Title 22 (17 A)	nalytes Tested)			
6010B	Arsenic	mg/kg	3.4	4.5
6010B	Barium	mg/kg	47	53
6010B	Beryllium	mg/kg	0.25J	0.43J
6010B	Cadmium	mg/kg	ND	0.11J
6010B	Chromium	mg/kg	20	17
6010B	Cobalt	mg/kg	3.1	7.7
6010B	Copper	mg/kg	11	15
6010B	Lead	mg/kg	4.9	11
7471A	Mercury	mg/kg	ND	0.20
6010B	Nickel	mg/kg	14	22
6010B	Vanadium	mg/kg	25	29
6010B	Zinc	mg/kg	39	44

Acronyms and Notes:

ND= Not detected above the laboratory method detection limit (MDL).

J = Detected above the laboratory MDL and below the laboratory practical quantitation limit (PQL). mg/kg, μ g/kg,

pg/g = Milligrams per kilogram, micrograms per kilogram, picograms per gram, respectively.

% = Percent present.

EPA = Environmental Protection Agency test method.

Unless identified, all other constituents were not detected above the MDL.