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Modern burn care has been characterized by substantial increases in sur-
vival and improvements in functional outcomes for burn patients over the
past 30 years. Twenty-first century optimal burn care consists of a specialized
treatment scheme that incorporates early surgical wound closure, critical
care management, and rehabilitation efforts. The success of burn treatment
as a multidisciplinary model has fostered the organization of burn centers as
regional resources for severely injured patients, including individuals with
large open wounds.

The review in this article and the Burn Care Guidelines published by the
American Burn Association both illustrate the need for Class I evidence to
support standards of burn care [1]. In many cases, our practices are based on
years of Class II evidence from small clinical trials. Multicenter research col-
laborations, such as the National Institutes of Health–funded genomics pro-
ject ‘‘Inflammation and the Host Response’’ (http://www.gluegrant.org),
have begun to codify standards of practice that should pave the way for
improved future multicenter clinical trials [2,3].

Acute burn care

Burn wound management

Early eschar excision for massive burn injuries has had the greatest im-
pact on burn patient survival by reducing the incidence of wound sepsis, hy-
percatabolism, numbers of operations, and hospital lengths of stay [4–6].
Wounds that take longer than 3 weeks to epithelialize typically heal with ex-
cessive scarring and contractures that produce aesthetic and functional im-
pairment. Clinicians must be able to anticipate the healing potential of
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a fresh wound to weigh the relative risks and benefits of excision and graft-
ing of the burn wound. An accurate estimation of burn depth is paramount
to proper wound management. An experienced burn provider usually can
identify shallow or full-thickness wounds based on clinical grounds alone.
Intermediate dermal injury (‘‘indeterminate’’ burn) poses the greatest chal-
lenge. Unfortunately, several studies indicate that initial evaluation even
by an experienced surgeon may be only 50% to 70% accurate as to whether
an indeterminate dermal burn will heal within 3 weeks [7–9].

Investigators have searched for an objective adjunct to clinical judgment
so that patients with indeterminate burns with poor healing potential also
may benefit from early excision. Various techniques attempt to quantify
physical changes associated with skin injury, such as the presence of dena-
tured collagen, wound edema, and an altered blood flow pattern [10–13].
The most recent development in this field is noncontact laser Doppler imag-
ing, which records the reflectance shift of moving red blood cells in the der-
mal capillary plexus to provide a color perfusion map of the wound [14].
Theoretically, reduced dermal blood flow portends a low likelihood of heal-
ing and could prompt a clinician to operate sooner. This technique is well
tolerated by patients and avoids the artifact of pressure on the wound
with the scanning device held at a distance. Noncontact laser Doppler imag-
ing examinations can be repeated serially over the first several days after
burn as wound bed perfusion evolves throughout the resuscitation phase.
Indeterminate dermal burns may become progressively deeper several
days after injury (a process termed ‘‘wound conversion’’) as healing poten-
tial is affected by perfusion, edema, and infection [15]. Wound conversion,
however, is minimized when a patient receives adequate fluid resuscitation
and proper wound management [16]. Although promising, noncontact laser
Doppler imaging has not yet demonstrated consistent reproducibility and
has been no more reliable than experienced burn surgeons [17–19]. It has
not been incorporated into the mainstream of burn care.

Although full-thickness and deep dermal burns are best excised within the
first week after injury, more superficial wounds may be treated with topical
agents until they heal or have demonstrated that they will not heal within 3
weeks. An ideal dressing should be comfortable for the patient, easy to
apply and remove, conform to the wound, be relatively cheap, and require
infrequent changes. Biologically, it must provide a moist wound environ-
ment, limit growth of micro-organisms with good eschar penetration,
have no or minimal systemic effect, and débride devitalized tissue as needed.
Currently, such universal dressing does not exist; however, not all wounds
require these features. Small shallow burns, for example, do not require
dressings with antimicrobial activity. Greasy gauze is appropriate for shal-
low dermal burns. A recently marketed ointment containing b-glucan (Glu-
can-Pro, Brennan Medical, St Paul, Minnesota), a carbohydrate derived
from oat, may be appropriate for shallow wounds because it is soothing
and mitigates itching. b-glucan may have an immunomodulatory effect by
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stimulating macrophage activity [20,21]. b-glucan is also available as a dress-
ing (Glucan II, Brennan Medical, St Paul, Minnesota) and is a favored
dressing for donor sites at many centers across the United States [22,23].

Biologic dressings may enhance partial-thickness injury healing. Their
proposed benefits stem from infrequent dressing reapplication, improved
patient comfort, and topical administration of growth factors. A growing
list of biologic dressings has been approved by the US Food and Drug Ad-
ministration, with several more undergoing clinical trial. In larger burns in
which cost is a limiting factor and outpatient therapy is not feasible, human
cadaver skin and porcine skin remain good choices for temporary biologic
dressings. Table 1 lists frequently used biologic and nonbiologic dressings
for burn wounds.

Antibiotic activity becomes more relevant in dressings for deeper
wounds, because they are more prone to infection. The most common

Table 1

Commonly used dressings for burn wounds, skin grafts, and donor sites

Dressings Category Examples

Appropriate

indications

Nonbiologic

Petrolatum Xeroform, Xeroflo,

Adaptic, Aquaphor

gauze

Partial-thickness

burns, skin grafts,

donor sites

Silver Acticoat, Acticoat-7,

Aquacel-Ag,

Silvasorb

Partial-thickness

burns, skin grafts,

donor sites

Polyurethane OpSite, Tegaderm Partial-thickness

burns, donor sites

Foam Lyofoam Partial-thickness

burns

Silicone Mepitel Partial-thickness

burns, skin grafts,

donor sites

Negative pressure

therapy

Wound

VAC system

Skin grafts

Biosynthetic

and biologic

Oat Glucan II Partial-thickness

burns, skin

grafts, donor sites

Collagen and

fibroblasts

Transcyte, Apligraf Partial-thickness

burns

Collagen,

fibroblasts,

and keratinocytes

OrCel Partial-thickness

burns

Allograft (cadaver) Fresh or

cryopreserved

Partial-thickness

burns

Xenograft Porcine skin,

porcine

intestinal

submucosa (Oasis)

Partial-thickness

burns
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topical antimicrobial agent for deeper dermal burns is silver sulfadiazine
(Thermazine, King Pharmaceuticals, Bristol, Tennessee). Silver is effective
against a broad spectrum of gram-positive and gram-negative organisms, in-
cluding most types of Staphylococcus aureus and Pseudomonas aeruginosa
[24]. It has been incorporated in commercially available dressings, such as
Acticoat (Smith and Nephew, Largo, Florida) and Aquacel-Ag (ConvaTec,
Princeton, New Jersey) [25,26]. Both products can be used to cover partial-
thickness burns, meshed skin grafts, and donor sites.

Ideally, when a burn wound is excised, the wound bed should be replaced
with full-thickness autograft skin; unfortunately, full-thickness skin avail-
ability is limited by the number and size of full-thickness donor sites that
can be primarily closed [27]. Whenever possible, split-thickness sheet grafts
should be applied as sheet grafts to maximize function and aesthetics [28].
The standard practice of expanded meshed split-thickness skin autograft
achieves wound closure over larger areas, but its disadvantages include frag-
ile wound beds, suboptimal appearance, reduced pliability, and scarring. In
patients with large burns, serial harvesting (‘‘recropping’’) of donor sites
may be necessary with larger body surface injuries; one must wait for donor
sites to heal, and subsequent skin grafts are thinner and of lesser quality. In
the meantime, fresh or cryopreserved cadaver (allograft) skin can be used as
a temporary biologic dressing over the excised burn wound bed. Taken to-
gether, the current process of partial-thickness autografting for large burns
yields suboptimal results for burn wounds covered with widely expanded
skin grafts and the reharvested donor sites. The recognition of current lim-
itations has created an impetus for research on commercially available skin
substitutes.

There are two general classifications of skin substitutes: cultured epider-
mal grafts and dermal substitutes. Several caveats exist regarding use of skin
substitutes for permanent wound coverage. Cultured epithelial autografts
have limited use as a stand-alone replacement because they provide a thin
and fragile sheet of keratinocytes that frequently sheer and offer little dura-
bility [29–31]. Although epithelial allografts may be suitable as biologic
dressings, they cannot be used as skin substitutes because they are ultimately
rejected by the recipient’s immune system. The dermis determines optimal
engraftment and graft durability. In vitro autologous dermal regeneration
has not been achieved with current available technology. Providing a dermal
layer for wounds requires an exogenous matrix template. Integra (Integra
LifeSciences Corp., Plainsboro, New Jersey) is a dermal replacement tem-
plate comprised of an inner matrix layer of bovine collagen and shark gly-
cosaminoglycan, adhered to a silicone outer layer [32–34]. The inner layer
forms a scaffold for in situ dermal regeneration while the outer layer con-
tains water vapors and provides a physical barrier to the outside environ-
ment. After approximately 2 weeks, the neodermis is sufficiently
vascularized to accept a thin partial-thickness autograft (0.06 in thick)
[35]. Although Integra is relatively fragile and susceptible to infection,
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sufficient longitudinal experience in several centers suggests that consistently
good results with this product are possible [32,36–38]. An acellular cryopre-
served cadaver dermis (AlloDerm, LifeCell Corporation, Branchburg, New
Jersey) also has been marketed as a dermal replacement, but clinical en-
dorsement for this product as an acute burn wound replacement remains
limited [39,40]. Boyce and colleagues [41] reported on a promising new ap-
proach of maturing the epidermal-dermal skin substitute in vitro by cultur-
ing autologous keratinocytes on a collagen matrix. The composite skin
replacement is applied to the wound 2 to 3 weeks after harvesting autolo-
gous skin; in the meantime, the wound bed can be prepared with another
layer of dermal substitute. If successful, this strategy could reduce the prob-
lem of shearing seen with application of cultured cells directly onto a wound
bed and increase the elasticity, pliability, and function of the wound bed.

Fluid resuscitation

Judicious fluid resuscitation is one the greatest challenges in the care of
acutely burned victims. Burn injuries over more than 20% of surface area
result in increased capillary permeability and edema in burned and non-
burned tissues. Vasoactive mediators from injured skin, such as histamine,
prostaglandins, and oxygen-free radicals, mediate a massive capillary leak
syndrome that typically lasts for 24 hours after injury [42]. Burn shock is
characterized by persistent hypovolemia that demands continuous intrave-
nous fluid rate modification over the first 24 to 48 hours of hospitalization.
Several formulas developed over the past 50 years to estimate patient fluid
needs have been based on body weight and burn surface area. Each formula
differs on the amount and type of crystalloid and the necessity for colloid
infusion during resuscitation. The most widely used formula in adults is
the Parkland (or Baxter) formula [43], which calls for the infusion of
4 mL/kg/% total body surface area (TBSA) burn lactated Ringer’s solution
for 24 hours. Half of the volume should be administered over the first
8 hours and the other half during the next 16 hours. Throughout this period,
the clinician must continuously re-evaluate patient response to resuscitation
and titrate the fluids to achieve a mean arterial pressure of more than 60 mm
Hg and urine output of more than 30 mL/h. In children, low glycogen stores
and maintenance fluid needs should be addressed by augmenting the resus-
citation fluid with an isotonic maintenance solution that contains dextrose.
Controversy persists among burn specialists over the use and timing of col-
loids. Animal studies suggest that capillary permeability is maximal within
the first 8 to 12 hours and may be exacerbated by colloid administration
[42,44]. Centers that routinely use colloids generally administer them later
in the resuscitation phase.

Deep burns, inhalation injury, comorbid illnesses, associated injuries,
and delay in resuscitation are recognized to increase fluid requirements
[45]. Formulas only serve as initial guidelines, and maintenance of urine
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output (0.5 mL/kg/h in adults and 1 mL/kg/h in children) is the best surro-
gate marker of adequate end-organ perfusion. Not satisfied with crude
reliance on urine output, many investigators have sought to improve
goal-directed therapy during resuscitation. Despite the appeal of invasive
hemodynamic monitoring and the natural desire to augment oxygen delivery,
a well-designed prospective randomized trial failed to show any advantages to
preload-driven resuscitation [46]. Patients who were given preload-driven
resuscitation had equally low central filling pressures and intrathoracic blood
volumes compared with patients on the Parkland formula. The authors
concluded that the additional fluid volume (60% over initial calculations)
administered to the ‘‘preload’’ group leaked out of the intravascular space
and contributed to peripheral edema.

Although Dr. Baxter repeatedly stressed that most patients could be re-
suscitated with 3.7 to 4.3 mL/kg/% TBSA burn, recent reports describe av-
erage resuscitation volumes significantly exceeding predicted needs, as high
as 8 mL/kg/% TBSA [47,48]. This phenomenon has been termed ‘‘fluid
creep.’’ Proposed explanations for this discrepancy include not reducing
fluid rates when urine outputs exceed 0.5 mL/kg/h, relying on invasive mon-
itors to guide resuscitation, and administering larger doses of opioids to
control burn pain (termed ‘‘opioid creep’’) [49]. It may be possible that
the nature of burn injuries and inhalation injuries has evolved; patients
who have been in methamphetamine explosions may exemplify this evolu-
tion, because they typically require large resuscitation volumes [50].
Whether higher fluid administration correlates with improved survival is un-
clear. Compared with the mid-twentieth century, acute renal failure, a com-
mon sequela of underresuscitation, is uncommon when resuscitation is
initiated early and death because of failed resuscitation is even rarer. Exces-
sive volume resuscitation generates its own complications. Edema may
become severe enough in unburned extremities that escharotomies and, oc-
casionally, fasciotomies become necessary [51]. Lung tissue edema may lead
to acute respiratory failure [52]. Gut and mesenteric edema manifests as in-
tra-abdominal hypertension; fascial release may be required to treat abdom-
inal compartment syndrome [53,54]. Edema also may become symptomatic
in the orbits, as evidenced by elevated intraocular pressures and need for lat-
eral canthotomies [55].

Several strategies to mitigate ‘‘fluid creep’’ are currently being investi-
gated. For instance, hourly urine output measurements have been criticized
because hourly intervals are arbitrarily chosen for convenience. A recent an-
imal study suggested that an automated closed-loop system that adjusts
fluid administration to continuous urine output measurement may decrease
fluctuations based on human interventions [56]. Such systems could be
adapted with additional inputs, such as blood pressure or base deficit mea-
surements, to guide resuscitation needs. Considerable interest also exists in
antioxidant therapy, because membrane lipid peroxidation and oxygen-free
radicals are major components of burn shock physiology [57]. Animal and
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clinical studies suggest that antioxidants reduce fluid requirements and burn
wound edema during resuscitation [58,59]. Early administration of tocoph-
erol and ascorbate in critically ill surgical trauma patients also shortens the
duration of mechanical ventilation and decreases the incidence of multior-
gan failure [60]. Antioxidant therapy as an adjunct to burn resuscitation
mandates large-scale multicenter prospective validation before it should
be accepted as standard of care. Another interesting strategy is plasma ex-
change, which theoretically removes inflammatory mediators circulating in
the systemic circulation. Although Warden and colleagues [61] described
the use of plasma exchange to salvage patients who were failing resuscitation
more than 20 years ago, confirmatory studies to explain its salutary mech-
anisms or clinical benefits are still lacking.

Inhalation injury and intensive care management

Airway burn injuries can be divided into two types: upper airway thermal
injury and lower airway chemical injury. Carbon monoxide poisoning is
more accurately categorized as a systemic intoxication with the lung as a por-
tal of entry. Clinicians often group all three into ‘‘inhalation injury’’ because
all three insults may coexist, for example, in a patient who has been in
a closed-space fire. The diagnosis of an upper airway burn can be made
readily by assessment of hoarseness or stridor and examination of the pos-
terior pharynx for edema or mucosal slough. Injuries to the lower airways
can be diagnosed by direct visualization (fiberoptic bronchoscopy), sugges-
tion of a ventilation/perfusion mismatch (xenon scan), or radiographic evi-
dence of small airway inflammation and obstruction (CT scan) [62–64].
Xenon scanning is mostly of historical interest, and additional information
obtained via CT scan is of questionable clinical value. The transport of pa-
tients to the radiology suite with ongoing resuscitation is cumbersome and
at times hazardous. Although bronchoscopy confirms a clinical diagnosis
of inhalation injury, it rarely alters clinical management.

The diagnosis of carbon monoxide poisoning can be measured easily with
a serum carboxyhemoglobin level. Administration of 100% oxygen reduces
the half-life of carboxyhemoglobin from 4 hours (on 21% O2) to approxi-
mately 45 minutes. In practice, many patients with carbon monoxide poi-
soning have normalized values upon arrival to the burn center.
Proponents of hyperbaric oxygen (HBO) therapy have argued that hyper-
baric chamber treatment lessens long-term neurologic sequelae, even with
normal pretreatment carbon monoxide levels. Two prospective randomized
trials of HBO therapy have yielded conflicting results [65,66]. Scheinkestel
and colleagues [65] described sequential chamber treatments over 3 to 6
days, with hyperbaric-treated individuals performing worse on neuropsy-
chological testing compared with normobaric treatment. Conversely,
Weaver and colleagues [66] used a treatment algorithm consisting of three
HBO treatments within 24 hours of enrollment and reported that cognitive
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impairments were less frequent at 6 weeks in the HBO group and persisted
at 1-year follow-up. The first study specifically excluded burn patients,
whereas the second report apparently did not include major burn injuries,
as evidenced by few being patients hospitalized (14%) or requiring mechan-
ical ventilation (8%). The presence of a major burn requires careful fluid re-
suscitation, whereas mechanical ventilation imposes an additional logistical
challenge for patients placed in HBO chambers. In our own experience, se-
verely burned victims with concomitant carbon monoxide poisoning experi-
ence high complication rates when HBO therapy is attempted [67]. HBO
treatment for carbon monoxide poisoning in patients probably should be
limited to patients with burn injuries smaller than 15% TBSA.

Patients with lower airway inhalation injury are at risk for developing
acute respiratory distress syndrome because of direct airway injury coupled
with increased volume resuscitation requirements. Although an optimal ven-
tilation strategy for inhalation injury remains to be defined, many burn cen-
ters have adopted the use of lower tidal volumes and reduced airway plateau
pressures to treat acute respiratory distress syndrome based on compelling
data from the Acute Respiratory Distress Syndrome Network group [68].
Although ‘‘prophylactic’’ use of a lung protective ventilation strategy in in-
halation injury is an appealing concept, previous efforts have failed to show
clinical benefits in patients at risk for acute respiratory distress syndrome
[69]. For the small number of patients who oxygenate poorly on conven-
tional settings, high-frequency oscillatory ventilation can improve oxygena-
tion dramatically while acute respiratory distress syndrome resolves [70,71].
Several pharmacologic means to minimize airway narrowing, prevent air-
way obstruction, and improve clearance of debris have been shown to
have variable success in animal models of lower airway inhalation injury.
These strategies include mucus fragmentation (N-acetylcysteine), bronchodi-
lation (b2 agonists, nitric oxide), clot dissolution (antithrombins, tissue plas-
minogen activator, and heparin), flow turbulence reduction (partial liquid
ventilation), and inhibition of inflammation (steroidal and nonsteroidal
anti-inflammatory agents) [72–77]. Widespread adoption of any of these
agents awaits confirmation with level I evidence.

Prolonged mechanical ventilation often complicates the care of large
burns, with or without inhalation injury. The debate over tracheostomy
compared with translaryngeal intubation remains unresolved, because there
are no prospective studies with appropriate side-by-side comparison [78–81].
For any benefit of tracheostomy to be realized, this procedure should be per-
formed early in the patient’s course. Predictors of successful ventilator
weaning are often inaccurate, however, and tracheostomy can be a morbid
procedure. Outcome comparison is also difficult because all patients with
tracheostomy are cross-over from the translaryngeal intubation, and an ac-
curate assessment of long-term tracheal complications can be made only by
fiberoptic laryngoscopy on all patients studied. It is likely that individual
burn centers will remain entrenched either on the conservative or aggressive
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side of the tracheostomy debate. Given the absence of Class I evidence, rec-
ommendations for airway management must include options rather than
standards of clinical care.

Anemia

Hospitalized burn victims become anemic because of hemodilution, rela-
tive bone marrow suppression, and frequent laboratory draws. Early eschar
excision, currently widely accepted as a standard of burn care in North
America, traditionally has been associated with significant operative blood
loss [82]. Blood transfusion is a life-saving treatment in some circumstances
but has potential drawbacks, such as viral transmission, transfusion reac-
tions, and immunosuppressive effects. ‘‘Passenger’’ leukocytes present in
transfused packed red blood cell units are critical components of immune
modulation [83]. Transfusion of leukocyte-depleted blood reduces the inci-
dence of infection in postoperative cardiac and noncardiac surgery patients
[84,85]; however, the validity of this approach in the injured patient remains
to be established. In a multicenter retrospective study on blood use in burn
centers, Palmieri and colleagues [86] reported that patients with burns over
20% received on average 14 units of packed red blood cells over the course
of their hospitalization, and they suggested that transfusion requirements in-
dependently increased the risk of infections and mortality. Methods devel-
oped to reduce intraoperative blood loss include use of tourniquets,
compression wrappings and elevation for extremities, application of hemo-
static agents and epinephrine-soaked pads to excised wounds, and subcuta-
neous infusion of dilute epinephrine under the eschar and donor sites
[82,87]. With accumulating data underscoring the safety of relative anemia
(hemoglobin of 7 g/dL) in critically ill patients [88,89], burn centers are grad-
ually accepting lower steady-state hemoglobin levels outside the operating
room. The current trend is to adopt a restrictive transfusion policy based
on individual patients’ demonstrated needs.

The necessity for prophylaxis of deep venous thromboses and pulmonary
emboli in burn patients remains unresolved. Although thromboembolic dis-
ease was historically viewed as a rare occurrence in burn patients, recent re-
ports document a varying incidence of deep venous thromboses/pulmonary
emboli in this patient population proportional to the frequency of duplex
ultrasound examinations, whether performed as a serial screening tool or se-
lectively based on symptomatology [90–92]. Compression devices are of un-
proven value, and their application is poorly tolerated in individuals with
lower extremity open wounds. Administration of heparin and related com-
pounds must be weighed against their side-effects. Most notably, heparin-in-
duced thrombocytopenia has emerged as a recognized complication in the
burn unit [93,94]. Heparin-induced thrombocytopenia is a severe prothrom-
botic state that is associated with dreaded complications, such as digit
necrosis, limb loss, and even death. The efficacy of alternative
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anticoagulation agents, such as low molecular weight heparin compounds
and pentasaccharides, has not yet been evaluated. Large-scale prospective
studies are needed before we are able to define the indications and the
most efficacious agents for deep venous thromboses/pulmonary emboli pro-
phylaxis in burn patients.

Modulation of post-burn hypermetabolism

Burn injuries over more than 25% TBSA are associated with a hypermet-
abolic state that develops over the first 5 days and persists until the wounds
are completely healed. Sometimes it lasts up to a year after injury [95]. Pro-
tein catabolism is a particularly deleterious feature of this response: the loss
of lean body mass is a barrier to rehabilitation for all patients and retards
normal growth in burned children. Early surgical wound excision and
skin grafting remains the most expeditious way to reduce the inflammatory
burden posed by the wound. Routine care in the burn intensive care unit
also should include specific daily management strategies to manage hyper-
metabolism. Maintenance of warm ambient temperatures (33�C) partially
reduces the obligatory heat loss created by fever [96]. Nutritional supple-
mentation must be instituted early in the patient’s course, ideally during
the resuscitation phase and before ileus develops. Enteral feedings initially
can be based on estimated needs and subsequently adjusted by indirect cal-
orimetry. The prevention, prompt diagnosis, and treatment of infections
represent a daily challenge in burn patients. Control of infection also signif-
icantly reduces energy expenditure over a patient’s hospitalization. Hyper-
glycemia is another marker of severe metabolic derangement and has been
associated with worse outcomes in burn patients [97,98]. Two recent pro-
spective, randomized evaluations by Van den Berghe and colleagues
[99,100] have established that maintenance of euglycemia via continuous in-
sulin infusion is desirable in critically ill patients because it decreases the in-
cidence of infections and reduces mortality.

During the recovery phase, a rehabilitation program that includes exer-
cise against resistance builds not only lean body mass but also muscle
strength [101,102]. Pharmacologic agents that help preserve and restore
lean body mass represent adjuncts in modulating post-burn hypermetabo-
lism. Recombinant growth hormone (administered over 1 year) prospec-
tively evaluated in a double-blind trial in children with severe burns
suggested that children on growth hormone gained more lean body mass,
height, and bone-mineral content than control subjects [103]. The benefits
of growth hormone are not applicable to adults, because hyperglycemia is
a common side effect in this group [104]. Oxandrolone, a testosterone ana-
log, is an anabolic steroid with reduced virilizing potential [105,106]. A pro-
spective trial of oxandrolone in children demonstrated improvement in net
protein balance after 1 week of administration [107]. In a recently completed
randomized, placebo-controlled trial, adults who received oxandrolone had
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reduced lengths of hospital stay compared with patients on placebo [108].
Although many factors potentially impact length of stay, the study suggests
a benefit to oxandrolone. Propranolol, a nonselective beta-blocker, reduces
tachycardia, energy expenditure, and substrate cycling and prevents fatty in-
filtration of the liver [95,109]. In a randomized study of 25 children, Hern-
don and colleagues [110] demonstrated that propranolol attenuated the
effect of hypermetabolism by reversing muscle protein catabolism. Beta-
blockade also constitutes an attractive strategy for adults in which tachycar-
dia is undesirable and less well tolerated in patients with pre-existing heart
disease. Ongoing trials are indicated to evaluate the efficacy and safety of
propranolol in adults.

Electrical injuries

Electrical burns represent a minority of admissions at major burn units
but often cause severe morbidity beyond obvious skin injuries. In particular,
high-voltage injuries (arbitrarily defined as O1000 V) may lead to tempo-
rary dysrhythmias in survivors, be associated with major blunt trauma,
and cause deep tissue destruction. Other deficits may manifest themselves
in a delayed fashion: two commonly described long-term sequelae are pe-
ripheral motor or sensory neuropathy and the appearance of cataracts
[111,112]. Most patients with electrical burns are young men injured at
work (eg, construction workers, electricians, and linemen). Injury and dis-
ability in this demographic group result in major loss of wages and signifi-
cant medical costs [113,114]. No Class I evidence exists to support
standardized management of electrical burns. Available guidelines recom-
mend 24-hour telemetry monitoring for all patients with high-voltage in-
juries and for patients with low-voltage injuries who have an abnormal
initial EKG [115]. Some data, however, suggest that monitoring high-volt-
age injuries with an initial normal EKG may be superfluous [116]. Deep
electrical injuries generate rhabdomyolysis and myoglobinuria. In this set-
ting, fluid resuscitation should be titrated to maintain a urine output of
100 mL/h until the urine clinically appears clear. Acute renal failure from
myoglobinuria is rare unless resuscitation is delayed. Several methods
have been proposed to enhance renal clearance of myoglobin, including al-
kalinization of urine and osmotic diuresis with mannitol [117]. These ad-
junct measures are of unproven value and represent individual centers’
practices and will remain so until prospective evidence validates their benefit
over simple isotonic crystalloid resuscitation.

Early fasciotomy or surgical débridement of necrotic muscle may be war-
ranted when severe acidosis and myoglobinuria do not rapidly improve with
aggressive resuscitation; management in a burn center in which these in-
juries can be monitored closely by a burn surgeon is optimal. Although
most limbs can be salvaged with early diagnosis of compartment syndrome
and compartment fasciotomies, major débridement and early amputation



196 PHAM & GIBRAN
occasionally may be necessary [118]. Although routine fasciotomy has been
advocated, a review of national trends in management of patients with elec-
trical burns supports selective decompression [119]. Mann and colleagues
[113] reported that most patients with high-voltage injuries (70%) did not
require emergent operation and no amputations were required in patients
who were monitored. Monitoring consists of serial clinical assessments of
tissue perfusion and peripheral nerve function in at-risk extremities. The
use of technetium scan has not gained wide acceptance for it is overly sen-
sitive in detecting deep tissue damage [120]. Fibrosis is the end of result of
limited deep-tissue necrosis, whereas overly aggressive débridement may
introduce infection and increase the risk of amputation.

Rehabilitation and reconstruction

With an increasing number of survivors of major burn injuries, successful
re-entry into society becomes the next major challenge. A coordinated burn
center program that includes surgeons, physiatrists, pediatricians, occupa-
tional and physical therapists, vocational rehabilitation specialists, and psy-
chologists is essential to successful rehabilitation. Perhaps because of their
resilience and adaptive ability, children recover well even after major burn
injury. Sheridan and colleagues [121] reported that most children treated
at Shriners Burn Institute (Boston) who survived massive burns (R70%
TBSA) became productive members of society. In their series however,
20% of patients had physical scores below norm; indicating that this sub-
group had persistent sequelae. In adults, an important benchmark may be
return to work. There is little information reported in the literature on
this subject, however. A recent two-center review reported that median
time off work approximated 12 weeks, and 90% of patients had regained em-
ployment by 2 years [122]. It is noteworthy that only 37% of patients re-
turned to their preinjury job without accommodations. Several factors
contributed to this finding: burn size, location of burns, and psychiatric his-
tory. A related but seldom reported outcome is impairment. Standard
methods to calculate physical impairment are not widely used in burn care
because they require either tedious calculations (whole person impairment
rating) or initial investment in costly equipment ($27,000 for the Dexter
Evaluation system) [123,124]. Psychological assessment is another important
component of impairment rating. Efforts are underway in this arena to de-
velop tools that are appropriate gauges of the quality of life in burn survi-
vors. The ongoing multicenter collaborative Burn Injury Rehabilitation
Model System Program funded by the National Institute of Disability and
Rehabilitation Research has increased awareness among burn providers
and patients about burn survivor needs; despite progress since its inception,
much more can be done to improve our patients’ return to function.

Reconstructive surgery is essential to the rehabilitation process because it
helps restore function and body image. The problems of hypertrophic
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scarring and contracture remain enormous challenges for reconstructive
burn surgeons. Hypertrophic scars may develop in healed burn areas,
grafted sites, and even donor sites. Commonly used preventive strategies
aimed at reducing raised scars include pressure therapy, topical silicone
gel application, and massage [125–127]. Well-designed prospective studies
to support use of these modalities are lacking. Patients with large burns
can expect to undergo several scar revisions over their lifetime, because
each procedure results in small incremental gains in function and appear-
ance. Current understanding of the pathophysiology of hypertrophic scar-
ring unfortunately remains limited, because many previous studies have
studied mature scars and not scars in evolution. A standard animal model
for hypertrophic scarring does not yet exist. Recent laboratory efforts have
focused on the female red Duroc pig as multiple laboratories attempt to val-
idate similarities in skin healing between this model and humans [128–130].

Access to burn care

The success of modern burn care, characterized by improved survival
rates and return to preinjury function, is closely associated with the develop-
ment of specialized burn centers. The burn center is not just ‘‘an area of the
hospital’’ but a system of care that includes a specialized infrastructure,
highly trained providers, and treatment algorithms that serve the unique
needs of the burn victim. The burn center must be equipped to deliver all
aspects of burn care, from initial management and acute surgical wound
coverage, through rehabilitation and long-term reconstruction. Akin to
other areas of medicine in which a relationship between volume and out-
come has been established, the same appears true for burn centers. This pro-
cess has driven regionalization of burn care in the past two decades, with
many low-volume centers closing and seriously injured patients being re-
ferred to regional burn centers for definitive care. The American Burn Asso-
ciation has participated actively in this transformation by generating criteria
for burn center referral (Box 1). The American Burn Association in associ-
ation with the American College of Surgeons also has established a burn
center verification program for approximately two decades. So far, 43 of
the 139 listed burn centers in the United States have been certified by this
process, and it is likely that they will continue to serve as centers of excel-
lence for the foreseeable future.

Specialized burn care has created a demand for highly trained providers,
including surgeons, nurses, therapists, psychologists, pharmacists, and reha-
bilitation physiatrists to form a multidisciplinary care team. The ranks of
burn surgeons are usually filled with individuals having completed training
in general surgery or plastic surgery. Their scope of practice, however, also
includes components of pediatric and surgical critical care. Surgeons
interested in burn care often seek additional training through burn
fellowships. Whereas these individuals only number five to seven per year,
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many fellowship positions remained unfilled. A similar situation exists for
other burn team specialists. Experienced burn therapists are in short supply
because proficiency requires many months of on-the-job training, and ad-
vertised positions may stay unfilled for indefinite periods of time. Whether
this reality will result in a workforce shortage or create additional impetus
for regionalization remains an unanswered question.

The large-scale use of air transport for burn patients started during the
Vietnam War, during which field burn casualties were flown to the Brooke
Army Medical Center in San Antonio, TX. Since that time, transport of
burn patients has become more sophisticated, especially with the addition
of respirators that were not available in the Vietnam Era. Successful trans-
fer/transport over large distances requires good communication and coordi-
nation between referring and receiving facilities and highly trained personnel
in the prehospital phase of care. Although our regional burn center covers
an area one-fourth the land mass of the United States, outcomes for long-
distance transfer patients are equivalent to that of patients directly admitted
to the burn center [131].

Regionalization of care also creates two additional challenges: (1) proper
patient triage and (2) coordination of transport, sometimes over great
distances. It has been long recognized that referring physicians often under-
or overestimate burn surface area, which leads to inappropriate initial care,
increased morbidity and mortality, and unnecessary use of air transport

Box 1. American Burn Association burn unit referral criteria

1. Partial thickness burns >10% TBSA
2. Burns that involve the hands, face, feet, genitalia, perineum,

or major joints
3. Third-degree (full-thickness) burns in any age group
4. Electrical burns, including lightning injury
5. Chemical burns
6. Inhalation injury
7. Burn injury in patients with pre-existing medical disorder that

could complicate management or recovery or affect mortality
8. Patients with concomitant burn and trauma in which the burn

injury poses the greatest risk of morbidity or mortality
9. Burned children in hospitals without qualified personnel or

equipment for the care of children
10. Burn injury in patients who require special social, emotional,

or long-term rehabilitative intervention

Adapted from the American Burn Association. Burn unit referral criteria. Avail-
able at http://www.ameriburn.org. Accessed June 30, 2006.

http://www.ameriburn.org
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systems. Initial burn triage appears well suited for televideoconference con-
sultation because most injuries can be assessed rapidly by an experienced
provider at a remote location. Several burn centers in the United States
and abroad have gained experiences with the application of telemedicine
to initial burn treatment and patient follow-up [132–134]. Its reported ad-
vantages include improved access to tertiary care in rural and medically un-
derserved areas, cost savings with fewer air transports for minor burns,
increased patient satisfaction thanks to reduced travel expenses, and more
time spent with providers. Cost savings are mainly felt on the patient side,
whereas the use of videoconference technology represents a major expendi-
ture for health care systems because of investments in infrastructure, main-
tenance costs, and communication expenses. Others have reported on the
use of e-mail, including pictures for patient data communication [135].
This method has the added benefit of minimal technologic investment. So
far, regulations have lagged behind technology with many unresolved issues
such as patient confidentiality, licensure and credentialing, malpractice lia-
bility for providers, and reimbursement agreements that could offset the
cost of telemedicine. Clearly, this area represents a most exciting develop-
ment in burn care and likely will mature over the next few years.

Burn disaster planning

Mass disasters caused by explosions or structure fires typically result in
a large number of burn casualties. The Rhode Island Station nightclub
fire on February 20, 2003 resulted in 100 deaths and 215 injured patients,
more than 50 of them with serious burns [136]. The terrorist attacks on Sep-
tember 11, 2001 were so lethal that the number of injured survivors was ac-
tually small. Still, one third of injured patients in New York City needed
treatment for severe burns [137]. One could imagine that had the World
Trade Center towers not collapsed, the number of burn casualties would
have been much higher. The optimal care for burn victims follows a sequence
of rapid and proper field triage, followed by intensive care management,
burn excision and wound coverage procedures, and finally rehabilitation.
For all these reasons, early access to specialized burn care is of paramount
importance.

The triage of casualties at the scene naturally involves the activation of
state and local response systems. To augment local capacities, the federal gov-
ernment can deploy disaster medical assistance teams to the scene. Burn spe-
cialty teams are specialized disaster medical assistance teams that consist of
burn-experienced personnel to provide assistance needed in the initial care
of burn victims. Four regional burn specialty teams are currently available
for federal deployment. Burn specialty teams were deployed after the World
Trade Center attack on September 11 and to support local resources after the
Rhode Island nightclub fire. The last layer of this tiered response system in-
volves military support to civil authority via activation of US Army special
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medical augmentation response teams. Two burn-specialized special medical
augmentation response teams are currently based in San Antonio, TX, but so
far have never been used for US civilian mass casualties. Because special med-
ical augmentation response teams possess long-range air evacuation capabil-
ities, they could become invaluable in the secondary triage and transfer of
victims outside the disaster area.

Recognizing that casualty numbers exceeding 50% of maximum capacity
(surge capacity) would quickly exhaust resources of local burn centers, the
American Burn Association has advocated for a triage system unique to
mass casualty burn events [138]. Primary triage is handled according to state
and local activation plans, with burn patients triaged to a burn center within
24 hours of injury. Secondary triage is the coordinated transfer of patients
from one burn center to a verified burn center after surge capacity is
reached. In the event that casualties overwhelm local and national resources,
patients would be triaged according to a survival probability grid that pri-
oritizes treatment for patients with the highest likelihood of survival.

Burn research

A central tenet of any burn center should be its commitment to education
and research. The physiologic challenge caused by burn injury may be
greater than any other type of insult on the human body. It is a model
that lends itself to study and can be replicated in the laboratory. In 2006,
the official publication of the American Burn Association was renamed
the Journal of Burn Care and Research. This change underscores the need
for additional research to validate current practices and test unanswered
questions in our field. In the clinical arena, several projects are worthy of
mention because they embrace the concept of economy of scale to pa-
tient-oriented research. First, the organization of the National Burn Repos-
itory has created a large patient database accessible for research. Second,
many centers across the United States have organized into a burn multicen-
ter trial group. Their efforts have resulted in noteworthy publications on
transfusion practices [85], toxic epidermal necrolysis syndrome treatment
[107], and validation of oxandrolone as anabolic agent [86,108,139]. ‘‘In-
flammation and the Host Response to Injury’’ is a major National Institute
of Health–funded multicenter program that includes trauma and burn pa-
tients. This ambitious translational project aims to correlate genomic and
proteomic responses to physiologic perturbations observed at the bedside.
Finally, the burn injury model system is a multi-institutional project funded
by the National Institute of Disability and Rehabilitation Research (http://
bms-dcc.uchsc.edu) to evaluate longitudinal outcomes after major burns.
Optimally, current efforts in bench research, translational science, and out-
come analyses will generate the necessary Class I evidence to create stan-
dards in burn care for the next generation.

http://bms-dcc.uchsc.edu
http://bms-dcc.uchsc.edu
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