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“What’s New in Surgery” evolves from the contributions of leaders in each of the fields of surgery. In
every instance the author has been designated by the appropriate Council from the American College
of Surgeons’ Advisory Councils for the Surgical Specialties. This feature is now presented in issues of
the Journal throughout the year.

It would be difficult to set forth the variety of physical
and moral . . .
—Surgeon Daniel Drake MD, describing his own
hand burns in 18301

Burn surgery is a young specialty in an environment rich
with organizational and technical innovation.2 New
modes and techniques of care are being constantly ex-
plored, challenging the ability of even its most active
practitioners to clearly define best practices. Although
clinical outcomes are vastly better than they were 50
years ago, important questions remain.

EVOLUTION OF THE FIELD
Until surprisingly recently, burn care was a depressing
field, in which terrible suffering and tragic outcomes
were the general expectation.3-5 Patients died after burn-
ing from burn shock during the first few postinjury days.
If they survived this period, death came from wound
sepsis during the first few postinjury weeks. Respiratory
insufficiency killed those who escaped these two most
common problems. These issues were understood
poorly, if at all, in the early part of the 20th century.

The casualties of disastrous accidents and wars pro-
moted innovation in burns. Clinical observations of vic-
tims of the Rialto Concert Hall fire in 19306 and the
Coconut Grove fire in 19427 made surgeons aware of the
vastly increased fluid requirements of burn patients dur-
ing the first 1 to 2 days after injury. This led to the
development of the Moore Burn Budget Formula.8 At
the end of World War II, stimulated by burn injuries
seen in armored and aerial warfare and in the fire bomb-

ings of cities, the United States Army Institute of Surgi-
cal Research was established to ensure an adequate un-
derstanding of burn injury on which to base the
management of future casualties. This group refined
clinical observations and developed weight- and burn
size�based resuscitation formulas, such as the Evans,
Brooke, and modified Brooke.9

In the early 20th century, burn wounds were managed
by application of any number of topical preparations.
Septic death was still the lot of most patients with large
injuries. In the 1970s, early excision of small deep burns
and immediate autografting was reported to result in
shortened hospital stays, reduced patient suffering, and
better functional outcomes.10 To do these operations in
patients with larger injuries, particularly children, sur-
geons required sophisticated intensive care and blood
banking technologies that were then in their infancies.
But surgeons, notably at the Army Institute of Surgical
Research and at the Massachusetts General Hospital,
were successful in exploring these strategies in patients
with large wounds. They demonstrated improved sur-
vival in patients with burns that were previously rou-
tinely lethal.11,12 These operations have evolved over the
intervening years, so that near total early excision is now
possible and patients with very large wounds have excel-
lent survival probabilities.13,14

Respiratory failure, induced by inhalation injury or
by systemic inflammation15 is the final common killer of
burn patients who follow the natural history of their
injuries. Development of positive pressure ventilation,
lung protective ventilation strategies,16-18 general critical
care techniques, and innovative modes of support19-22

have contributed to markedly enhanced survival in these
patients, but respiratory failure remains a serious prob-
lem in the burn intensive care unit.

Although burn injury continues to cause great suffer-
ing, survival and outcomes quality have steadily im-
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proved since Dr Drake’s description of his own
injury.14,23-25 The field has seen recent changes in both
systems and surgical techniques.

SYSTEMS ISSUES
Like most aspects of medicine, burn care has evolved
both organizationally and technically. But the multidis-
ciplinary personnel and unique physical infrastructure
required to manage serious burns have driven marked
organizational changes in burn care.

Volume-outcomes linkage and the burn
center concept
As the field has evolved, an increasingly complex and
expensive infrastructure of personnel and equipment has
been required to generate outcomes consistent with a
rising standard of care. It is not cost effective to maintain
this infrastructure unless clinical volumes are high, and
individual practitioner skill cannot be maintained if
clinical volumes are low. These pressures, and demon-
stration of reduced costs associated with burn center care
when compared with nonburn center care, have driven
increasing regionalization.26 Patients with large injuries
are now usually transported to regional burn programs
for care, rather than being cared for in general hospitals
close to home, because any inconvenience is more than
compensated for by enhanced outcomes.

A rapidly growing body of data supports a strong link
between clinical volumes and outcomes quality.27-29

These analyses have been applied to both individual sur-
geon performance and overall program volume.30-32

Burn-specific data exist that suggest not only shortened
hospital stays and enhanced clinical outcomes, but also
lower costs, when complex burns are managed in burn
center programs.26 Quality of life of burn survivors has
been statistically significantly linked to longterm partic-
ipation in burn center�based aftercare programs.25

The result of regionalization has been the evolution of
the burn center from an isolated intensive care unit and

operating room to a place where the full range of burn
care is provided in one location. Such centers are able
to attract and retain a multidisciplinary group of pro-
viders with particular interest and expertise in burns.
The range of services provided is large, including initial
acute care, rehabilitation services, and reconstructive
surgery.33,34

Burn center verification
Almost 20 years ago, the American College of Surgeons
(ACS) recognized that seriously injured patients fared
better when managed by experienced teams with proper
equipment. This realization evolved into the Trauma
Center Verification Program, which has so profoundly
molded trauma care, with emergency medical services
directing patient flows only to ACS-verified trauma cen-
ters.35 Shortly thereafter, the American College of Sur-
geons, in collaboration with the American Burn Associ-
ation (ABA), began the Burn Center Verification
Program, in recognition of the unique needs of the seri-
ously burned. This program has reached maturity. Veri-
fication must be renewed every 3 years. Verified centers
can be relied on to provide competent comprehensive
care to burn patients.36 Burn centers have not been uni-
form in accepting the ACS-ABA verification process; to
date there has been little financial benefit associated with
verification.

The American Burn Association
The American Burn Association was founded almost 40
years ago to foster communication of clinical strategies
in the evolving field of burn care. But the organization
itself has evolved, and activities of the ABA are diverse
and are now supported by a full-time staff, with head-
quarters in Chicago. ABA activities range from clinical
teaching through legislative advocacy.

The Advanced Burn Life Support Course, modeled
on the American College of Surgeons Committee on
Trauma Advanced Trauma Life Support Course, is ad-
ministered by the ABA. Its mission is to disseminate
standardized management strategies relevant to the early
care of serious burns to practitioners who manage such
injuries infrequently. This is particularly important as
regionalization of burn care has evolved and seriously
injured patients commonly spend many important
hours in transport before reaching the site of definitive
burn care. The course has been well received and has

Abbreviations and Acronyms

ABA � American Burn Association
ACS � American College of Surgeons
BST � Burn Specialty Teams
IGF � insulin-like growth factor
PTSD � posttraumatic stress disorder
r-HGH� recombinant human growth hormone
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been translated into Spanish. Several thousand students
attend courses worldwide each year.

The ABA has been active in coordinating lobbying ef-
forts at the national level for flame-retardant sleepwear and
the fire-safe cigarette.37 It has played an important role in
burn disaster preparedness, helping to support staffing of
the Burn Specialty Teams of the National Disaster Medical
System.38 It has sponsored development of practice guide-
lines in burn care, convening an expert committee that
developed a now popular set of practice guidelines that
address the first hours after injury.39

Disaster preparedness
Mass casualty situations, caused by structural fires, ter-
rorist attack, or war, can generate large numbers of burn
patients.40-42 A high incidence of deep and complex
fourth-degree burns and severe inhalation injury has
been noted in survivors of mass casualties related to
structural fires.43,44 The rising threat of domestic terror-
ism has prompted the National Disaster Medical System
to create Burn Specialty Teams, designed to augment its
Disaster Medical Assistance Teams in event of a mass
casualty situation involving burns. There are now four
Burn Specialty Teams (BST) nationally, made up of vol-
unteers from regional burn programs who become fed-
eral employees on deployment. These specialists can
augment a deployed Disaster Medical Assistance Team,
general hospital, or regional burn unit overwhelmed
with volume or complexity of burn casualties. The de-
ployed Disaster Medical Assistance Team members can
assist with initial evaluation and resuscitation, surgery,
critical care, triage, and transportation. To date, BSTs
have been deployed for two burn disasters. Boston-based
BST-1 was deployed on the afternoon of September 11,
2001, to assist in the aftermath of the World Trade Cen-
ter attack. In the following week, additional BSTs pro-
vided staff to augment New York Hospital’s burn unit.
After the Rhode Island nightclub fire in February 2003,
in which 187 people were injured and 100 killed, BSTs
provided staff to facilitate care of these patients. This
system is now an important and quickly responsive re-
source able to augment burn care facilities facing sudden
surges in census caused by natural or manmade disasters.

Nonburn conditions
Burn units have a unique set of resources, critical care
and surgical wound expertise, that can be very useful in

several nonburn conditions. These conditions are in-
creasingly referred to burn programs for definitive care.45

Perhaps most common of these conditions is toxic
epidermal necrolysis. Although the pathophysiology of
toxic epidermal necrolysis remains unclear, the clinical
consequences are well described, with a diffuse slough at
the dermal-epidermal junction, involving both cutane-
ous and mucosal surfaces. These patients have been
shown to have improved clinical outcomes in burn
units.46-49 Their longterm care needs are often best met
in the multidisciplinary environment of a burn aftercare
program.50-53

Other disease and injury processes commonly re-
ferred to burn units are purpura fulminans and major
mechanical soft tissue injuries and avulsions. These pa-
tients fall well within the expertise and practice patterns
of burn center multidisciplinary staff.54,55 There is some
evidence that the incidence of certain soft tissue infec-
tions is increasing, and these are also well managed with
the unique resources available in burn units.56,57

Workforce issues
Burn care has become increasingly complex over the past
few decades. Burn surgery has evolved into a surgical
subspecialty that focuses on the comprehensive needs of
burn patients throughout injury and recovery, including
both acute and reconstructive needs. Burn surgery en-
compasses elements of general, trauma, plastic, pediatric
surgery, and surgical critical care. No single basic train-
ing program encompasses all of these requirements. In-
creasingly, practitioners at a high level seek added train-
ing in burn surgery,2 burn-focused physical and
occupational therapy, and burn nursing.

In the United States, most burn surgeons come from
the ranks of general-trauma surgeons, many also trained
in critical care and having additional training or experi-
ence in burn surgery. Special training requirements, long
hours, relatively low reimbursement, and the challeng-
ing patient population make it probable that it will be
increasingly difficult to staff burn and trauma programs
with adequate numbers of properly trained surgeons as
the current active generation ages.58,59 It is likely that we
will see increased use of nurse practitioners and physi-
cian assistants in future years. Programs specializing in
high-acuity patients are increasingly difficult to keep
funded.60-62 It is probable that the common practice of
combining burn, trauma, and urgent general surgery
programs will continue, given the similarity in practice
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patterns (unpredictable surgical needs and critical care)
and the greater efficiency of higher-volume programs.63

Additional training opportunities are needed for sur-
geons to receive combined burn surgical and surgical
critical care training.

Burn aftercare organization
High-quality burn survivals are not generally reached at
initial discharge, but commonly require a monitored
scar management program, physical and occupational
therapy, and staged reconstructive operations spaced out
over several years. Until relatively recently, these predict-
able aftercare needs were either not met, or were found
by patients in a haphazard way, among unrelated prac-
titioners. These needs are most effectively met in a co-
ordinated multidisciplinary setting,64 and, increasingly,
these services are being delivered within comprehensive
burn care programs.25,65

Emotional distress is a predictable part of many burn
injuries.66-68 Posttraumatic stress disorder (PTSD) is re-
ported to occur in up to 30% of burn patients and may
be especially difficult in the presence of preinjury psy-
chiatric illness.69,70 Newer tools are being developed to
anticipate and prevent PTSD in burns.71,72 There is
some evidence that early pharmacologic treatment may
reduce subsequent PTSD incidence and severity, al-
though data are not sufficient to recommend this as
routine therapy.73-76 Effective pain control measures may
also have a favorable impact on PTSD rates. Recent data
revealed a strong inverse relationship between opiate
dosing during acute care and ultimate PTSD severity.77

Acknowledgment of this reality fosters early interven-
tion and seems to enhance the rapidity and quality of
recovery.78,79

Longterm outcomes
Longterm outcomes are assuming an increasingly im-
portant role in burn research programs; there remain
many unexplored aspects of burn recovery. This work is
particularly important in light of the increasing survival
of patients with very large burns. Available data seem to
support the contention that most survivors of large
burns have satisfying longterm quality of life.80-82 A
study of 80 adult survivors of massive burns as children,
an average of 15 years earlier, revealed that most had very
satisfying outcomes quality.25 This study revealed that
strong family support and participation in a coordinated
burn aftercare program were strongly associated with

enhanced outcomes quality, findings confirmed by other
studies.80,83-85 A collaboration under the auspices of the
American Burn Association is pursuing additional stud-
ies with newly developed outcomes quality tools to ex-
amine factors related to outcomes quality in greater
detail.86

SURGICAL TECHNIQUES
Burn care has become an increasingly technical field,
crossing several traditional disciplinary boundaries.
Progress in multiple fields has major impact in burn care.

Initial evaluation and resuscitation
Burn patients are often injured in ways that are consis-
tent with nonburn trauma.87 A through initial evalua-
tion is essential to exclude concurrent nonthermal
trauma that might complicate management and result in
morbidity through nontreatment.88 As in trauma, heli-
cal CT scanning has become increasingly useful to eval-
uate patients at risk for blunt injuries of the head, neck,
chest, abdomen, or pelvis. Single-pass scanning proto-
cols, from the vertex of the head to the pelvis, have been
devised. With properly timed dye injections, such scans
can include CT angiograms and abdominal visceral eval-
uation and can be completed in as little as 3 minutes.
After taking the patient from the radiology suite, data
can be reformatted so one can visualize the facial skele-
ton and spine, eliminating the need for many time-
consuming conventional radiographs.89

The early capillary leak and consequent fluid resusci-
tation requirements of burn patients are unique and re-
main poorly understood. Current thinking is that medi-
ators released from the injured tissue cause this leak
through unknown mechanisms.90,91 The resulting soft
tissue edema is a major source of morbidity, associated
with airway instability, respiratory failure, limb isch-
emia, and compartment syndromes of the extremities
and torso.92 Patients with particularly deep burns, inha-
lation injury, or delayed resuscitation have predictably
increased volume requirements for resuscitation. The
increased requirements of those in whom resuscitation
has been delayed is in some ways suggestive of a whole-
body ischemia-reperfusion reaction. Because the patho-
physiology is so poorly understood, intervention has
been confined to careful fluid replacement guided by
fomula, although most common formulae are inaccu-
rate in individual patients.93 There is good evidence
suggesting that antioxidants may be able to modify
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immediate postburn physiology so that such fluid ad-
ministration is not needed.94 One animal trial of vi-
tamin E did not reveal any benefit,95 but subsequent
animal and clinical projects with various antioxidants
and high-dose vitamin C demonstrated reduced resusci-
tation volumes.96-100 These benefits remain uncon-
firmed, and early antioxidant use is not considered the
standard of care in burn resuscitation.

Current burn resuscitation practices are not evidence
based,101 but morbidity related to excessive soft tissue
edema associated with burn resuscitation is widely ac-
knowledged.92,102 Three percent hypertonic saline was
advocated in the 1970s to address this issue,103,104 but its
use has been abandoned because of associated technical
difficulties.105 Initial administration of 7.5% saline-
dextran solution has been explored with cautiously en-
couraging initial results.106 The concept of oxygen deliv-
ery limited resuscitation and the potential benefit of
hyperdynamic resuscitation guided by pulmonary artery
catheter has been advocated, but not generally
adopted.107,108

Colloid is not advocated during the first 24 hours
after injury by most formulae because it has been feared
that the administered colloid will leak out into the in-
terstitium.109 Although criticized for methodologic
problems,110 a metaanalysis of albumin use in critical
illness suggested no benefit.111,112 But many practitioners
administer 5% human albumin during the first post-
injury hours in patients with very large burns in whom
massive crystalloid volume is otherwise needed,113 even
while tolerating low serum albumin levels in the post-
resusciation period.114,115 The role of colloid in fluid re-
suscitation is an important area needing quality prospec-
tive investigation.

Monitoring the adequacy of fluid resuscitation is gen-
erally done by observing blood pressure, pulse, and urine
output.116 Pulmonary artery catheters have less benefit
than previously thought, even in elderly high-risk pa-
tients117 and are generally reserved for exceptional cases.
Intrathoracic blood volume118 and thermodilution119

have been investigated recently, with encouraging pre-
liminary results. The ultimate goal of burn resuscitation
is tissue oxygen delivery, and several direct tissue oxygen-
ation monitoring techniques are being developed. Near
infrared spectroscopy120 and direct tissue oxygen mea-
surements121 have been looked at, again with cautiously
encouraging initial results. Further data are awaited.

Patients with large burns, particularly those in whom

resuscitation has been delayed, are at risk for abdominal
compartment syndrome.122-124 This presents with in-
creasing abdominal distention, decreasing urine output,
hypotension, and worsening pulmonary compliance.
Diagnosis is by serial examination supported by a blad-
der pressure over 25 mmHg. Although more common in
multiple-trauma patients, it is increasingly described in
patients with serious burns, particularly in those in
whom resuscitation has been delayed. Treatment is by
decompressive laparotomy with temporary abdominal
closure using a variety of prosthetic materials.125 Subse-
quent abdominal closure is accomplished after visceral
edema has resolved. Burns of the abdominal wall can
make this a technically challenging exercise, sometimes
requiring component release of the abdominal wall for
closure.126 In some cases, large amounts of intraperito-
neal fluid are the cause of abdominal compartment syn-
drome, and simply tapping this can improve the situa-
tion enough to avoid laparotomy.127

Unique burn critical care issues
Seriously burned individuals can only recover with de-
finitive wound closure. They can be sustained through
wound closure only with sophisticated critical care.
Most burn programs have embedded intensive care units
designed for the unique needs of burn patients,34 and
increasingly sophisticated critical care capabilities are an
expected part of burn programs. Although many ma-
neuvers are neither new nor unique to burn patients,
some are, and these will be discussed now.

Deep venous thrombosis and thromboembolic com-
plications were thought to be rare in burn patients in the
past,128,129 despite protracted immobility, hypercoagula-
bility, and common need for femoral vascular access.
Routine prophylaxis of deep venous thrombosis was not
justified.130 This supposition is coming into question
with the advent of higher index of suspicion prompted
by experience with trauma patients,131 and the increas-
ing availability of portable ultrasonic screening meth-
ods.132 Several authors have described a higher incidence
of thrombotic complications in burn patients than pre-
viously reported.133-135 Currently, there is no consensus
on the advisability or technique of routine thrombosis
prophylaxis in burn patients. But some form of prophy-
laxis is increasingly being prescribed for adult burn pa-
tients during periods of protracted critical illness or im-
mobility, including selective use of vena cava filters in
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very high risk patients.136 This is an area ready for a
quality prospective study.

Tight control of serum glucose in the critically ill has
been associated with a reduced incidence of infectious
complications and enhanced survival.137,138 Although it
is not clear if this effect will be seen in burn patients,
tighter glucose control is being practiced more com-
monly. Tight glucose control is not without risk; inter-
ruption of glucose administration during the high-dose
insulin infusions typically required by burn patients
poses some risk of hypoglycemia.139 This may be mod-
erated by adherence to insulin protocols.140 This is
another area of burn critical care ripe for quality
study.

Maintenance of serum albumin levels in the post-
resuscitation period has been debated for many years.
Albumin production is decreased in the hypermetabolic
patient.141,142 Quite low serum albumin concentrations
are well tolerated, probably because the overproduction
of acute phase proteins maintains colloid oncotic pres-
sure.115 A 1998 metaanalysis suggested albumin admin-
istration may be harmful, but these data are relatively
flawed and the conclusions are unlikely to apply to very
sick burn patients with profound hypoalbuminemia.111

The bulk of opinion supports maintenance of serum
albumin concentrations at least above 1.0 g/dL, and
higher in the face of enteral feeding intolerance or pul-
monary dysfunction.

Recombinant Activated Protein C (r-APC) is now
available and data suggest it may have some benefit in
selected patients with systemic sepsis and sudden organ
failures.143 It should be used judiciously because it is
expensive and associated with potential bleeding com-
plications.144 In properly selected patients, it is probably
cost effective.145 Data in burn patients are only anec-
dotal, but r-APC seems unlikely to be generally useful in
this population with relatively chronic organ dysfunc-
tions and large wounds.

Burn surgery has been a bloody business historically,
but this has changed dramatically in recent years.146 In-
creasing efforts have been made to minimize exposure to
blood products. Transfusion practices still vary between
programs to some extent, but are becoming more con-
sistent as the rate of blood loss, particularly in the oper-
ating room, becomes more controlled.147 Transfusion
practices in burns are an area where more research is
needed.

Topical agents play an important adjunctive role in

burn care. There are an increasing number of agents
available. The major agents used for patients with larger
injures remain silver sulfadiazene, aqueous 0.5% nitrate,
and 11.1% mafenide acetate cream. A 5% aqueous
mafenide acetate preparation is now widely available,
after limited use for many years.148-151 Like the 11.1%
cream, it is particularly useful against resistant Pseudo-
monas species, but is also a strong carbonic anhydrase
inhibitor, making it difficult to use in patients with re-
spiratory failure being managed with permissive hyper-
capia.16 Its use also may predispose to fungal growth.152

It has an important role in wounds colonized or infected
with resistant gram-negative species. Innovative non-
pharmacologic wound therapies, such as antimicrobial
peptides,153 are being actively explored, as are a number
of recently available silver-releasing membranes.154-156

The role of tracheostomy in burn intensive care re-
mains unclear. This issue has been debated for more
than 30 years157 and remains unresolved, with recent
publications urging both aggressive158,159 and conserva-
tive160,161 approaches. Given the higher incidence of clin-
ically important airway morbidity in young children af-
ter tracheostomy, an individualized approach is advised.

Inhalation injury and respiratory failure
Inhalation injury remains a major cause of morbidity,
prolonged ICU and hospital length of stay, and mortal-
ity in burn patients.162 A large variety of toxic substances
are inhaled, generally products of incomplete combus-
tion attached to smoke particles. Burning composite
materials are replete with potential toxins.163 Very fine
smoke particles will result in an alveolar injury; coarse
smoke will deposit primarily in the upper tracheobron-
chial tree. Injury pattern will differ with the type of
smoke and variety of toxins inhaled. In most patients,
early problems consist primarily of upper airway edema
and bronchospasm; initial chest radiographs are gener-
ally normal.164-166 In the days that follow, the injured
endobroncial epithelium will slough to a variable extent,
resulting in diffuse small airway obstruction. Very distal
injuries will cause alveolar flooding and derecruitment.

Diagnosis of inhalation injury remains a clinical
guess, despite efforts to develop tools to measure its pres-
ence and severity and thereby compare therapies and
predict outcomes. Diagnostic tools have included bron-
choscopy, bronchoalveolar lavage, technitium scanning,
and a variety of serum tests.164,167-172 None has proved
able to stratify the severity of subsequent clinical course.
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Intriguing early animal work with CT to stratify injury
severity during initial evaluation awaits clinical confir-
mation.173 The increased need for resuscitation fluid
caused by inhalation injury has now been roughly quan-
titated as 30 mL/kg.174

The 1980s were called a “decade without progress” in
inhalation injury management.175 But more recently,
there have been additional alternatives, if not real
progress, available for inhalation injury management.176

Active animal projects are exploring a number of poten-
tial therapeutic strategies. Ketorolac has been shown to
attenuate mircovascular changes after inhalation injury
in sheep.177 Surfactant and partial liquid ventilation with
perflubron have shown efficacy in a piglet model of in-
halation injury.178 Perflubron partial liquid ventilation,
although conceptually ideal for improved pulmonary
toilet and mechanical recruitment needs of inhalation
injury patients,179 was ineffective in a swine model of
inhalation injury.180 Nebulized dimethyl sulfoxide im-
proved inhalation injury physiology in a sheep mod-
el.181,182 Nitric oxide synthase inhibition reduced pulmo-
nary dysfunction after inhalation injury in sheep,183 as
did poly (ADP ribose) synthetase inhibition,184 although
P-selectin blockade did not.185 Nebulized heparin has
been investigated in sheep with inhalation injury, with
recent studies showing no benefit,186,187 although an ear-
lier study had suggested utility,188 and antithrombin-3
attenuated pulmonary inflammation and improved
function after inhalation injury in sheep.189

Human trials of inhalation injury salvage techniques
have been much more limited. In respiratory failure tri-
als, prone positioning transiently improved oxygen-
ation, but did not impact survival.190,191 Use of volumet-
ric diffusive (percussive) ventilation has been reported to
improve outcomes in inhalation injury,192,193 although
other studies have shown improved oxygenation but no
change in rates of pneumonia or survival.194 Inhaled ni-
tric oxide has improved oxygenation in inhalation inju-
ry,19,20 but outcomes improvement has not been demon-
strated. Oscillatory ventilation has been used effectively
in young children with primary oxygenation failure,
with limited use reported in pediatric inhalation inju-
ry.195 Compared with historic controls, nebulized hepa-
rin has benefited inhalation injury patients,196 and con-
firmatory data are awaited. Extracorporeal support has
been reported, but is rarely advised in most burn patients
because of associated bleeding complications.22,197,198

Perhaps the only therapy that has shown clear benefit

in human patients with respiratory failure is low-volume
ventilation.16,18,199 Most patients with inhalation injury
who require mechanical ventilation are best managed
with a strategy that includes pressure controlled ventila-
tion, which limits inflating pressures and concentrations
of oxygen to nonharmful levels and effective pulmonary
toilet. Innovative and experimental methods of support
are reserved for those few in whom this approach fails.

Carbon monoxide poisoning
Carbon monoxide poisoning is common in burn pa-
tients, and the role, if any, of hyperbaric oxygen has been
debated for years.200-203 Although serum carboxyhemo-
globin is commonly used to track the severity of expo-
sures, CO binds to other heme-containing enzymes and
can interfere with oxygen use and delivery. After decades
of anecdotal case series, two important prospective trials
have recently been published, unfortunately with con-
flicting results. In a randomized, controlled, double-
blind trial, which included neuropsychologic testing and
sham treatments in a multiplace hyperbaric chamber,
hyperbaric oxygen did not benefit, and may have wors-
ened, the outcomes of patients with CO poisoning.204 In
a second double-blind randomized trial, which included
sham chamber treatments and neuropsychiatric testing,
cognitive sequelae at 6 weeks were less frequent in the
hyperbaric-oxygen group.205 Both articles have been crit-
icized for methodologic flaws, so the role of hyperbaric
therapy in CO poisoning remains an open question, and
judgment must still be used to decide who should be
treated with hyperbaric oxygen. A reasonable compro-
mise is to consider for treatment those with severe CO
poisoning (otherwise unexplained loss of consciousness
or documented very high carboxyhemoglobin level)
who can be safely treated. In a monoplace chamber, this
often precludes treatment of hemodynamically tenuous
patients or those who are wheezing, febrile, or have thick
endobronchial secretions and are at risk of air-trapping
and gas embolism.206,207 If intubated patients are to be
treated, they should undergo myringotomy to eliminate
the possibility of tympanic membrane rupture, and en-
dotrachael tube balloons should be filled with saline
rather than air.

Nutritional support of hypermetabolism
Postresuscitation physiology is characterized as hyper-
metabolic, with fever, increased muscle catabolism, and
a hyperdynamic circulation.208 Traditionally, this physi-
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ology is supported by providing adequate nutrients
while the process is truncated through wound closure.
Realization that this physiology will continue for some
months after wound closure,209 and that there may be
adverse consequences of inadequately supported catab-
olism in some patients,210-212 has led to increasing inter-
est in modifying the physiology, rather than simply sup-
porting it.213 But nutritional support remains the
essential cornerstone of management of the hypermeta-
bolic burn patient.

Nutritional targets have remained static in recent
years, with most programs striving for protein goals of
2 to 3 grams per kilogram per day and caloric targets
of 1.5 times a calculated basal metabolic rate or 1.2 times
the resting energy expenditure measured using indirect
calorimetry.214,215 Glucose is ideally not the only fuel
because high levels are not oxidized in this hormonal
milieu.216 Additionally, adequate amounts of micronu-
trients and vitamins are essential.217

Nutritional support is generally monitored by serial
physical examination, urinary nitrogen excretion and
nitrogen balance, and indirect calorimetry.218 Urinary
nitrogen balance is not accurate as a predictor of protein
accretion when compared with stable isotopic studies, so
monitoring of muscle mass by other means is desired.219

Measurement of extracellular water by corrected bro-
mide space has recently been shown to be an accurate
way of determining lean body mass in acutely burned
patients, and might be a way to track changes in lean
body mass.220 Three-methylhistidine is an amino acid
unique to skeletal muscle, and its urinary excretion may
be a more accurate alternative to urinary urea nitrogen in
tracking muscle catabolism.221

The route of support is ideally enteral, reserving par-
enteral support for periods of ileus, often induced by
sepsis. Most patients tolerate gastric feedings without
difficulty,222 but the postpyloric route is required by
some,223 although this route is more difficult to monitor
and is not without serious potential complications.224

When properly used for moderate periods, properly ad-
ministered parenteral nutrition has not been associated
with morbidity and can have an important protective
effect on lean body mass.222

The nonessential amino acids, glutamine and argi-
nine, have critical roles in the burn patient. A significant
body of animal data suggests that these may be relatively
deficient in the hypermetabolic state.225 Using stable iso-
tope tracer techniques, this is being evaluated in burn

patients.226 The implications of this work are important,
in that certain patients may benefit from supplemental
administration of these otherwise nonessential amino
acids; clinical data to date have been mixed.227-229 Mul-
tiple projects are looking at infectious and other compli-
cations with and without provision of nonessential
amino acids, and these data are eagerly awaited. Nutri-
tional support is a complex area with much basic infor-
mation still missing.230

Modification of hypermetabolism
Before modern medical care, hypermetabolic physiology
probably had survival value because it was so well re-
tained across mammalian species. But it was now widely
assumed that certain aspects of this physiology are mal-
adaptive and may actually impair recovery. First among
these is muscle catabolism, which has become the prin-
cipal target of efforts to modify hypermetabolic
physiology.

The research group at Galveston has done extensive
pioneering work in this area, using a combination of
animal models and clinical protocols to evaluate recom-
binant human growth hormone (r-HGH), insulin,
insulin-like growth factor-1 (IGF-1), propranolol, clen-
buterol, and oxandrolone, both during acute care and in
the months after initial hospital discharge.231,232

The use of r-HGH as a daily intramuscular injection
during acute burn care has favorably influenced the he-
patic acute phase response,233,234 increased IGF-1 expres-
sion,235 decreased tumor necrosis factor expression,236

improved protein kinetics,237 maintained growth,238 pre-
vented intestinal epithelial atrohpy,239 and decreased do-
nor site healing time by 1.5 days.240 Concerns about
safety and longterm scarring have been unfounded, de-
spite unfavorable results in nonburn adult critical
illness.241-244 Administration of r-HGH can be contin-
ued in the outpatient setting by self-injection,245 and 1
year of such treatment has been reported to decrease
muscle catabolism and osteopenia,246 although vitamin
D depletion may have a role in the latter.210

Recombinant human growth hormone (r-HGH) can
lead to hyperglycemia, which increases mortality,247 but
can be well controlled by insulin infusion.248 Insulin in-
fusion prevents muscle catabolism after burn,249 and
prolonged euglycemic insulin infusion through acute
burn care prevents muscle catabolism and preserves lean
body mass.250

A combination of IGF-1 and its binding protein,
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IGFBP-3, attenuates muscle catabolism in children with
serious burns.251 Local IGF-1 gene transfer within
wounds decreases inflammatory cytokine expression.252

IGF-1 has a general anabolic effect and improves gut
mucosal integrity.253,254

Beta blockade with propranolol has anabolic ac-
tions,255,256 decreasing cardiac work,257 lowering periph-
eral lipolysis,258 decreasing extremity blood flow,259 and
increasing expression of anabolic substances in the mus-
cle of burned children.260 The beta agonist Clenbuterol
improves protein kinetics in burn animal models261,262

and in nonburn patients.261,263

Oxandrolone improves lean body mass in burn pa-
tients,264,265 especially those who were emaciated after
delayed treatment;266 these effects are not age dependent.267

Anabolic gene expression in the muscle of burned children
was enhanced with oxandrolone treatment.268 When com-
pared with r-HGH, fewer complications were noted
with oxandrolone.269 Although anabolic agents can in-
crease lean body mass, exercise is essential to developing
strength.270

Our lack of detailed understanding of the cellular and
subcellular biology of injury physiology has limited the
ability to modify it. But it seems likely that burgeoning
research efforts in the molecular mechanisms behind
this physiology of injury will lead to an enhanced ability
to control it. Notable among these research efforts is the
National Institutes of Health�sponsored “Glue Grant”
project, in which a diverse group of basic scientists and
surgeons have been brought together in an ambitious
attempt to describe these molecular mechanisms in hu-
man patients. This project, already in multicenter clini-
cal trials involving both burn and trauma patients, is
likely to be a landmark contribution leading to major
improvements in clinical care of the injured.

Interestingly, early burn wound excision has also re-
cently been shown to favorably influence the hypermeta-
bolic response and reduce catabolism,271 confirming ear-
lier work that demonstrated decreased energy needs with
early wound excision.272 Prompt wound closure and ef-
fective elimination of infection remain a most potent
tool to limit the hypermetabolic state.

Burn surgery
At the heart of the improved outcomes in burn patients
are changes in the breadth, indications, and techniques
of burn surgery, with perhaps the greatest recent change

being its breadth. As a field of specialization, burn sur-
gery brings together components of plastic, general,
trauma, and pediatric surgery. Operations fall into four
general categories: decompression procedues (escharoto-
mies and fasciotomies), excision and closure operations,
reconstructive operations, and supportive general surgi-
cal procedures (tracheostomy, gastrostomy, cholecystec-
tomy, bronchoscopy, vascular access procedures).

An essential element of excisional surgery is an ability
to accurately determine the burn depth or, more impor-
tantly, the ability of a burn to heal. Multiple variables
influence the ability of a cutaneous burn to heal, includ-
ing burn depth, skin thickness, anatomic area, density of
skin appendages, age, and quality of resuscitation. There
is a rich history, spanning several decades, of efforts to
develop tools to answer this common clinical ques-
tion.273 These efforts have included reflectance of col-
ored light from the burn wound, helium-neon laser
Doppler flowmeters to measure microvascular blood
flow, thermography, direct temperature measurement,
high-resolution ultrasonography, fluorescence of intra-
venously administered fluoresecein dye with ultraviolet
excitation, nonfluorescent intravenous dyes, burn
wound biopsy, nuclear magnetic resonance imaging,
and fluorescence of intravenously administered indocya-
nine green dye. Most recently, scanning laser Doppler
has been advocated.274 But at present, the eye of an ex-
perienced examiner can most accurately integrate the
multiple variables that influence the ability of a burn to
heal.

A major change in excisional burn surgery in recent
years has been a marked reduction in blood loss. Blood
product use in burn programs is now as much as 10-fold
less than it was 2 decades ago.148 This has come about
largely through adoption of a number of simple opera-
tive techniques. Principal among these are subeschar and
subcutaneous epinephrine clysis, extremity exsanguina-
tion, pneumatic tourniquet use, and maintenance of in-
traoperative euthermia.275-277 Although high-energy car-
bon dioxide laser ablation of burn eschar has been
proposed as a way to reduce bleeding in these pa-
tients,278,279 progress with simpler techniques has made
complex laser use much less attractive.

A practical alternative to staples and suture material
for skin graft fixation remains elusive;280-282 cyanoacrylic
glues have a limited role,283 as have various fibrin
glues.284-286
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Skin substitutes
Gauze dressings remain the standard of care for tempo-
rary cover of partial-thickness burns, and split-thickness
autograft remains the standard of care for definitive cov-
erage of full-thickness burns, but both have significant
imperfections. There has been a great deal of work done
in recent years attempting to address these imperfections
through development of a number of membranes de-
signed for temporary and permanent application to
wounds.287 This is a rapidly moving area and significant
additional changes are likely in the next few years.

Temporary skin substitutes are useful as dressings on
donor sites, as coverage of clean superficial wounds, to
provide temporary physiologic closure of deeper wounds
after excision while awaiting autografting, and occasion-
ally to test the viability of questionable wound beds.
Fresh or cryopreserved split-thickness human allograft is
the only temporary membrane that vascularizes, and it
remains the optimal temporary skin replacement.288,289

The risk of viral disease transmission with allograft is
minimal, because transplant screening techniques are
universally used by tissue banks.290,291 Increased regula-
tion by the Food and Drug Administration has led to
closure of many single-tissue banks with increased re-
gionalization of these resources into larger multiple-
tissue facilities.292-294

Fresh human amniotic membrane has been exten-
sively used all over the world as a temporary skin substi-
tute.295,296 Difficulty screening for viral diseases limits its
use in developed countries. Porcine xenograft, or pro-
cessed porcine dermis, is the only xenograft currently in
common use.297 Several single- and double-layer semi-
permeable synthetic membranes are available as are sev-
eral hydrocolloid dressings; all are useful, and none has
emerged as clearly superior.

To address the common issue of submembrane infec-
tion, several silver impregnated membranes or dressings
have been developed and marketed.154-156,298 Impreg-
nated partially occlusive and hydrofiber dressings are
being increasingly used for coverage of burns and other
wounds within programs of wound care. Clinical proto-
cols vary widely, but there clearly seems to be a place for
well-monitored membrane treatment of partial-
thickness burns.

There are some laboratory data suggesting that appli-
cation of growth factors to wounds may improve heal-
ing.299,300 To date this has been most practically done by
applying allogeneic cells rather than isolated growth fac-

tors, which are expensive to produce with current tech-
niques. Substances secreted by allogeneic cells, or re-
leased upon their dissolution, are thought by many
investigators to enhance wound healing. Clinical exam-
ples of this concept include allogeneic keratinocytes ap-
plied to superficial wounds and donor sites,301,302 topical
application of recombinant platelet-derived growth fac-
tor,303 cultured keratinocytes and fibroblasts seeded onto
opposite sides of a bilaminar bovine collagen matrix,304

and by culture of neonatal fibroblasts into the inner layer
of a bilayer skin substitute.305 None has emerged as
clearly superior.

During the next few years, it seems probable that we
will see greater use of membrane dressings for many
wounds, particulaly “active” membranes that either pro-
vide antibacterial activity, growth factor activity, or both.
With further development of viral transfection tech-
niques, keratinocytes genetically modified to overex-
press growth factors may be incorporated into
dressings.306-309

A reliable permanent skin substitute, most likely an
autologous composite, will profoundly change the field
of burn care. Several membranes have become available,
including epidermal, dermal, and composite substitutes.
Although all are useful, none yet meets the need for a
reliable composite skin replacement. In the mid 1970s,
Rheinwald and Green310 developed autologous epithe-
lial cell membranes. These are used clinically, despite
suboptimal engraftment and fragility, in patients with
massive injuries.311,312 The fragility of wounds closed
with epithelium led investigators to develop dermal re-
placements. This has taken three general directions: re-
tention of vascularized allograft through excision of the
overlying antigeneic epithelium,313,314 engraftment of
acellular dermis,315 and incorporation of synthetic der-
mal analogs.316

Integra (Integra LifeSciences Corporation) was ini-
tially approved by the US Food and Drug Administra-
tion for use in life-threatening burns. The inner layer of
this material is a 2-mm thick combination of bovine
collagen and chondroitin-6-sulfate, which has a 70- to
200-micrometer pore size to allow fibrovascular in-
growth. The outer layer is 0.009-inch polysiloxane poly-
mer to provide a physiologic vapor barrier. It can be
placed on freshly excised full-thickness burns, allowed to
vascularize for 2 weeks, and the outer silicone membrane
replaced with a thin epithelial autograft. Postmarketing
trials of Integra have shown favorable results in highly

252 Sheridan and Tompkins What’s New in Burns and Metabolism J Am Coll Surg



experienced hands,317 but the membrane must be care-
fully monitored for infectious complications.318 It has
been used with some success in experienced hands for
burn reconstruction.319-321 Incorporation of epithelial
cells by centrifugation has been tried in animals,322 and,
if successful, will potentially eliminate the two opera-
tions now required to use this membrane.

Freeze-dried acellular allogenic dermis simulta-
neously engrafted with a thin epithelial autograft (Allo-
Derm, LifeCell Corporation) is another approach to
dermal replacement.318,323 Clinical experience with this
material in acute and reconstructive burn wounds is
limited.324

Presence of both dermal and epidermal elements en-
hances epithelial maturation and graft performance.325

Ideally, both dermal and epidermal layers would be pro-
vided in an autologous composite. Human fibroblasts
cultured into a collagen-glycosaminoglycan membrane
with overlying epithelial cells have been successful in
animal models.326-331 Exciting clinical trails are in
progress with this material. Autologous keratinocytes
cultured into acellular allogeneic split-thickness dermis
has also been successful in an animal model and in pilot
human trials.311,332 Addition of fibroblasts into this com-
posite has demonstrated enhanced performance in a
nude mouse model.333 Maturation of the composite sub-
stitute concept will have a profound impact on the acute
and reconstructive care of burn patients.

Pain and anxiety management
Tremendous progress has been made in dealing with the
inevitable pain and anxiety associated with burn injury
and its management.334 Most burn programs have
evolved highly specific protocols that provide for objec-
tive assessment and specific interventions.335 Aggressive
management of these problems may reduce longterm
emotional sequalae.77 Reducing pain associated with
burn care has a major positive impact on patient336 and
caregiver337 experience, and increasing work is being
done with assessment and treatment of pain and anxiety
in young children with burns.338 Burn-specific assess-
ment tools have been lacking, a problem that is being
actively addressed.339 The strong synergy between opi-
ates and benzodiazepines has become more widely ap-
preciatated in burn programs,340,341 and although phar-
macologic management is the cornerstone of pain
control, the efficacy of adjuncts such as hypnosis and

virtual reality are being explored in an objective
way.342,343

Hypertrophic scarring
Hypertrophic scarring remains a terrible clinical prob-
lem. Hypertrophic scars can be described with a stan-
dardized rating system,344,345 but understanding the
pathophysiology and developing effective treatment
strategies have been hindered by the absence of an ani-
mal model. Healed wounds typically show involution of
neovasculature about 9 weeks after epithelialization.346

Wounds destined to become hypertrophic do not dem-
onstrate this normal physiology, but become increas-
ingly vascular at this time; the physiology behind this
clinical observation remains unclear, despite significant
new understanding.347,348 Recently, successful transplan-
tation of human hypertropic scars onto nude mice has
been reported,349 and is hoped that this model can be
used to develop innovative treatment strategies.

Current treatment methods are empirically derived
and include early wound closure, pressure garments, in-
jectable steroids, topical silicone, and massage regi-
mens.350,351 The multiple recommendations for treat-
ment are confusing and are not generally evidence
based.352 Recently, judicious use of vascular lasers has
been explored,353,354 but more work needs to be done
before vascular laser treatment can be endorsed.

Pruritis remains a very difficult problem during the
first year after injury;355,356 it is thought to involve local
release of histamine and other local mediators.357 Tradi-
tional treatment strategies have been based on systemic
antihistamine treatment.358 Recently, doxepin, an anti-
depressant with strong antihistamine properties, has
been approved for topical use for pruritis,76,359-361 and
additional experience with burn pruritis is awaited.
Neuropathic pain in scars and healed burns can be a
problem in some patients. This can be addressed with a
variety of supportive treaments. Occasional patients will
benefit from the use of gabapentin, an anticonvulsant
thought to stabilize nerves;362 more data would be valu-
able. Custom clear face masks, using a digital map cre-
ated by scanning with a helium-neon laser, are new de-
vices that are improvements over older technologies.363

Reconstruction and rehabilitation
The standard of successful burn care is no longer simply
survival, but the quality of that survival, which demands
a great deal of the burn occupational and physical ther-
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apy staff. This staff involvement transcends the entire
spectrum of care from the intensive care unit through
the outpatient clinic.364 In the critical care setting, reha-
bilitation priorities include ranging, splinting, and an-
tideformity positioning. These activities will prevent the
otherwise inevitable capsular contraction and shorten-
ing of tendon and muscle that complicate recovery. Ide-
ally, these activities can be scheduled so they coincide
with medications administered for dressing changes.34

As patients are weaned from intensive care, therapy ef-
forts increase markedly. Priorities during this phase are
continued passive ranging, increasing active ranging and
strengthening, reduction of edema, and preparation for
work or school. Resisted range of motion, isometric ex-
ercises, active strengthening, and gait training are impor-
tant objectives. After discharge, rehabilitation priorities
include progressive ranging and strengthening, evalua-
tion of evolving problem areas, postoperative therapy
after reconstructive operations, and scar management.365

Directed exercise programs may shorten the time to full
recovery of preinjury strength.273,366

In the past, burn reconstruction was often delayed
until scars were fully mature, and it was often performed
by scattered practitioners not associated with the acute
burn care team. These factors could lead to significant
delays and lack of coordination in performing needed
operations, resulting in potentially correctable soft tissue
contractures becoming fixed deformities. Current data
demonstrate that outcomes quality is enhanced by long-
term followup with a multidisciplinary burn program.25

Increasingly, burn reconstruction has become part of the
package of comprehensive care offered by burn pro-
grams. Functionally limiting deformites are corrected
early in recovery, and important esthetic deformities are
given a high priority because they may help foster suc-
cessful reintegration.

In conclusion, despite recent progress, there are a
number of important organizational and technical issues
that remain in burn care. These include maintenance of
the burn workforce, burn center verification, disaster
preparedness, maintenance of capillary integrity during
resuscitation, restraint of hypermetabolism and muscle
catabolism, support of inhalation injury, understanding
of molecular biologic changes with injury, and control of
scar hypertrophy. Nevertheless, in no other area of
trauma care are multidisciplinary teamwork and com-
prehensive care from injury through recovery so evident
as in burns. Although the field is replete with unresolved

problems, care of the seriously burned can be incredibly
rewarding.
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