What's New in Burns and Metabolism

Robert L Sheridan, MD, FACS, Ronald G Tompkins, MD, ScD, FACS

"What's New in Surgery" evolves from the contributions of leaders in each of the fields of surgery. In every instance the author has been designated by the appropriate Council from the American College of Surgeons' Advisory Councils for the Surgical Specialties. This feature is now presented in issues of the Journal throughout the year.

It would be difficult to set forth the variety of physical and moral . . .

—Surgeon Daniel Drake MD, describing his own hand burns in 1830^1

Burn surgery is a young specialty in an environment rich with organizational and technical innovation.² New modes and techniques of care are being constantly explored, challenging the ability of even its most active practitioners to clearly define best practices. Although clinical outcomes are vastly better than they were 50 years ago, important questions remain.

EVOLUTION OF THE FIELD

Until surprisingly recently, burn care was a depressing field, in which terrible suffering and tragic outcomes were the general expectation.³⁻⁵ Patients died after burning from burn shock during the first few postinjury days. If they survived this period, death came from wound sepsis during the first few postinjury weeks. Respiratory insufficiency killed those who escaped these two most common problems. These issues were understood poorly, if at all, in the early part of the 20th century.

The casualties of disastrous accidents and wars promoted innovation in burns. Clinical observations of victims of the Rialto Concert Hall fire in 1930⁶ and the Coconut Grove fire in 1942⁷ made surgeons aware of the vastly increased fluid requirements of burn patients during the first 1 to 2 days after injury. This led to the development of the Moore Burn Budget Formula.⁸ At the end of World War II, stimulated by burn injuries seen in armored and aerial warfare and in the fire bomb-

Received November 10, 2003; Accepted November 10, 2003.

ings of cities, the United States Army Institute of Surgical Research was established to ensure an adequate understanding of burn injury on which to base the management of future casualties. This group refined clinical observations and developed weight- and burn size—based resuscitation formulas, such as the Evans, Brooke, and modified Brooke.⁹

In the early 20th century, burn wounds were managed by application of any number of topical preparations. Septic death was still the lot of most patients with large injuries. In the 1970s, early excision of small deep burns and immediate autografting was reported to result in shortened hospital stays, reduced patient suffering, and better functional outcomes.¹⁰ To do these operations in patients with larger injuries, particularly children, surgeons required sophisticated intensive care and blood banking technologies that were then in their infancies. But surgeons, notably at the Army Institute of Surgical Research and at the Massachusetts General Hospital, were successful in exploring these strategies in patients with large wounds. They demonstrated improved survival in patients with burns that were previously routinely lethal.^{11,12} These operations have evolved over the intervening years, so that near total early excision is now possible and patients with very large wounds have excellent survival probabilities.^{13,14}

Respiratory failure, induced by inhalation injury or by systemic inflammation¹⁵ is the final common killer of burn patients who follow the natural history of their injuries. Development of positive pressure ventilation, lung protective ventilation strategies,¹⁶⁻¹⁸ general critical care techniques, and innovative modes of support¹⁹⁻²² have contributed to markedly enhanced survival in these patients, but respiratory failure remains a serious problem in the burn intensive care unit.

Although burn injury continues to cause great suffering, survival and outcomes quality have steadily im-

From the Burn Surgery Service, Shriners Hospital for Children, Department of Surgery, Division of Burns and Trauma, Massachusetts General Hospital; Department of Surgery, Harvard Medical School, Boston, MA. Correspondence address: R L Sheridan, MD, Shriners Hospital for Children,

⁵¹ Blossom St, Boston, MA 02114.

Abbreviations and Acronyms

- ABA = American Burn Association
- ACS = American College of Surgeons
- BST = Burn Specialty Teams IGF = insulin-like growth factor
- IGF = insulin-like growth factor PTSD = posttraumatic stress disorder
- r-HGH = recombinant human growth hormone

proved since Dr Drake's description of his own injury.^{14,23-25} The field has seen recent changes in both systems and surgical techniques.

SYSTEMS ISSUES

Like most aspects of medicine, burn care has evolved both organizationally and technically. But the multidisciplinary personnel and unique physical infrastructure required to manage serious burns have driven marked organizational changes in burn care.

Volume-outcomes linkage and the burn center concept

As the field has evolved, an increasingly complex and expensive infrastructure of personnel and equipment has been required to generate outcomes consistent with a rising standard of care. It is not cost effective to maintain this infrastructure unless clinical volumes are high, and individual practitioner skill cannot be maintained if clinical volumes are low. These pressures, and demonstration of reduced costs associated with burn center care when compared with nonburn center care, have driven increasing regionalization.²⁶ Patients with large injuries are now usually transported to regional burn programs for care, rather than being cared for in general hospitals close to home, because any inconvenience is more than compensated for by enhanced outcomes.

A rapidly growing body of data supports a strong link between clinical volumes and outcomes quality.²⁷⁻²⁹ These analyses have been applied to both individual surgeon performance and overall program volume.³⁰⁻³² Burn-specific data exist that suggest not only shortened hospital stays and enhanced clinical outcomes, but also lower costs, when complex burns are managed in burn center programs.²⁶ Quality of life of burn survivors has been statistically significantly linked to longterm participation in burn center—based aftercare programs.²⁵

The result of regionalization has been the evolution of the burn center from an isolated intensive care unit and operating room to a place where the full range of burn care is provided in one location. Such centers are able to attract and retain a multidisciplinary group of providers with particular interest and expertise in burns. The range of services provided is large, including initial acute care, rehabilitation services, and reconstructive surgery.^{33,34}

Burn center verification

Almost 20 years ago, the American College of Surgeons (ACS) recognized that seriously injured patients fared better when managed by experienced teams with proper equipment. This realization evolved into the Trauma Center Verification Program, which has so profoundly molded trauma care, with emergency medical services directing patient flows only to ACS-verified trauma centers.35 Shortly thereafter, the American College of Surgeons, in collaboration with the American Burn Association (ABA), began the Burn Center Verification Program, in recognition of the unique needs of the seriously burned. This program has reached maturity. Verification must be renewed every 3 years. Verified centers can be relied on to provide competent comprehensive care to burn patients.³⁶ Burn centers have not been uniform in accepting the ACS-ABA verification process; to date there has been little financial benefit associated with verification.

The American Burn Association

The American Burn Association was founded almost 40 years ago to foster communication of clinical strategies in the evolving field of burn care. But the organization itself has evolved, and activities of the ABA are diverse and are now supported by a full-time staff, with headquarters in Chicago. ABA activities range from clinical teaching through legislative advocacy.

The Advanced Burn Life Support Course, modeled on the American College of Surgeons Committee on Trauma Advanced Trauma Life Support Course, is administered by the ABA. Its mission is to disseminate standardized management strategies relevant to the early care of serious burns to practitioners who manage such injuries infrequently. This is particularly important as regionalization of burn care has evolved and seriously injured patients commonly spend many important hours in transport before reaching the site of definitive burn care. The course has been well received and has been translated into Spanish. Several thousand students attend courses worldwide each year.

The ABA has been active in coordinating lobbying efforts at the national level for flame-retardant sleepwear and the fire-safe cigarette.³⁷ It has played an important role in burn disaster preparedness, helping to support staffing of the Burn Specialty Teams of the National Disaster Medical System.³⁸ It has sponsored development of practice guidelines in burn care, convening an expert committee that developed a now popular set of practice guidelines that address the first hours after injury.³⁹

Disaster preparedness

Mass casualty situations, caused by structural fires, terrorist attack, or war, can generate large numbers of burn patients.40-42 A high incidence of deep and complex fourth-degree burns and severe inhalation injury has been noted in survivors of mass casualties related to structural fires.43,44 The rising threat of domestic terrorism has prompted the National Disaster Medical System to create Burn Specialty Teams, designed to augment its Disaster Medical Assistance Teams in event of a mass casualty situation involving burns. There are now four Burn Specialty Teams (BST) nationally, made up of volunteers from regional burn programs who become federal employees on deployment. These specialists can augment a deployed Disaster Medical Assistance Team, general hospital, or regional burn unit overwhelmed with volume or complexity of burn casualties. The deployed Disaster Medical Assistance Team members can assist with initial evaluation and resuscitation, surgery, critical care, triage, and transportation. To date, BSTs have been deployed for two burn disasters. Boston-based BST-1 was deployed on the afternoon of September 11, 2001, to assist in the aftermath of the World Trade Center attack. In the following week, additional BSTs provided staff to augment New York Hospital's burn unit. After the Rhode Island nightclub fire in February 2003, in which 187 people were injured and 100 killed, BSTs provided staff to facilitate care of these patients. This system is now an important and quickly responsive resource able to augment burn care facilities facing sudden surges in census caused by natural or manmade disasters.

Nonburn conditions

Burn units have a unique set of resources, critical care and surgical wound expertise, that can be very useful in several nonburn conditions. These conditions are increasingly referred to burn programs for definitive care.⁴⁵

Perhaps most common of these conditions is toxic epidermal necrolysis. Although the pathophysiology of toxic epidermal necrolysis remains unclear, the clinical consequences are well described, with a diffuse slough at the dermal-epidermal junction, involving both cutaneous and mucosal surfaces. These patients have been shown to have improved clinical outcomes in burn units.⁴⁶⁻⁴⁹ Their longterm care needs are often best met in the multidisciplinary environment of a burn aftercare program.⁵⁰⁻⁵³

Other disease and injury processes commonly referred to burn units are purpura fulminans and major mechanical soft tissue injuries and avulsions. These patients fall well within the expertise and practice patterns of burn center multidisciplinary staff.^{54,55} There is some evidence that the incidence of certain soft tissue infections is increasing, and these are also well managed with the unique resources available in burn units.^{56,57}

Workforce issues

Burn care has become increasingly complex over the past few decades. Burn surgery has evolved into a surgical subspecialty that focuses on the comprehensive needs of burn patients throughout injury and recovery, including both acute and reconstructive needs. Burn surgery encompasses elements of general, trauma, plastic, pediatric surgery, and surgical critical care. No single basic training program encompasses all of these requirements. Increasingly, practitioners at a high level seek added training in burn surgery,² burn-focused physical and occupational therapy, and burn nursing.

In the United States, most burn surgeons come from the ranks of general-trauma surgeons, many also trained in critical care and having additional training or experience in burn surgery. Special training requirements, long hours, relatively low reimbursement, and the challenging patient population make it probable that it will be increasingly difficult to staff burn and trauma programs with adequate numbers of properly trained surgeons as the current active generation ages.^{58,59} It is likely that we will see increased use of nurse practitioners and physician assistants in future years. Programs specializing in high-acuity patients are increasingly difficult to keep funded.⁶⁰⁻⁶² It is probable that the common practice of combining burn, trauma, and urgent general surgery programs will continue, given the similarity in practice patterns (unpredictable surgical needs and critical care) and the greater efficiency of higher-volume programs.⁶³ Additional training opportunities are needed for surgeons to receive combined burn surgical and surgical critical care training.

Burn aftercare organization

High-quality burn survivals are not generally reached at initial discharge, but commonly require a monitored scar management program, physical and occupational therapy, and staged reconstructive operations spaced out over several years. Until relatively recently, these predictable aftercare needs were either not met, or were found by patients in a haphazard way, among unrelated practitioners. These needs are most effectively met in a coordinated multidisciplinary setting,⁶⁴ and, increasingly, these services are being delivered within comprehensive burn care programs.^{25,65}

Emotional distress is a predictable part of many burn injuries.⁶⁶⁻⁶⁸ Posttraumatic stress disorder (PTSD) is reported to occur in up to 30% of burn patients and may be especially difficult in the presence of preinjury psychiatric illness.^{69,70} Newer tools are being developed to anticipate and prevent PTSD in burns.71,72 There is some evidence that early pharmacologic treatment may reduce subsequent PTSD incidence and severity, although data are not sufficient to recommend this as routine therapy.⁷³⁻⁷⁶ Effective pain control measures may also have a favorable impact on PTSD rates. Recent data revealed a strong inverse relationship between opiate dosing during acute care and ultimate PTSD severity.77 Acknowledgment of this reality fosters early intervention and seems to enhance the rapidity and quality of recovery.78,79

Longterm outcomes

Longterm outcomes are assuming an increasingly important role in burn research programs; there remain many unexplored aspects of burn recovery. This work is particularly important in light of the increasing survival of patients with very large burns. Available data seem to support the contention that most survivors of large burns have satisfying longterm quality of life.⁸⁰⁻⁸² A study of 80 adult survivors of massive burns as children, an average of 15 years earlier, revealed that most had very satisfying outcomes quality.²⁵ This study revealed that strong family support and participation in a coordinated burn aftercare program were strongly associated with

enhanced outcomes quality, findings confirmed by other studies.^{80,83-85} A collaboration under the auspices of the American Burn Association is pursuing additional studies with newly developed outcomes quality tools to examine factors related to outcomes quality in greater detail.⁸⁶

SURGICAL TECHNIQUES

Burn care has become an increasingly technical field, crossing several traditional disciplinary boundaries. Progress in multiple fields has major impact in burn care.

Initial evaluation and resuscitation

Burn patients are often injured in ways that are consistent with nonburn trauma.87 A through initial evaluation is essential to exclude concurrent nonthermal trauma that might complicate management and result in morbidity through nontreatment.88 As in trauma, helical CT scanning has become increasingly useful to evaluate patients at risk for blunt injuries of the head, neck, chest, abdomen, or pelvis. Single-pass scanning protocols, from the vertex of the head to the pelvis, have been devised. With properly timed dye injections, such scans can include CT angiograms and abdominal visceral evaluation and can be completed in as little as 3 minutes. After taking the patient from the radiology suite, data can be reformatted so one can visualize the facial skeleton and spine, eliminating the need for many timeconsuming conventional radiographs.⁸⁹

The early capillary leak and consequent fluid resuscitation requirements of burn patients are unique and remain poorly understood. Current thinking is that mediators released from the injured tissue cause this leak through unknown mechanisms.^{90,91} The resulting soft tissue edema is a major source of morbidity, associated with airway instability, respiratory failure, limb ischemia, and compartment syndromes of the extremities and torso.92 Patients with particularly deep burns, inhalation injury, or delayed resuscitation have predictably increased volume requirements for resuscitation. The increased requirements of those in whom resuscitation has been delayed is in some ways suggestive of a wholebody ischemia-reperfusion reaction. Because the pathophysiology is so poorly understood, intervention has been confined to careful fluid replacement guided by fomula, although most common formulae are inaccurate in individual patients.93 There is good evidence suggesting that antioxidants may be able to modify immediate postburn physiology so that such fluid administration is not needed.⁹⁴ One animal trial of vitamin E did not reveal any benefit,⁹⁵ but subsequent animal and clinical projects with various antioxidants and high-dose vitamin C demonstrated reduced resuscitation volumes.⁹⁶⁻¹⁰⁰ These benefits remain unconfirmed, and early antioxidant use is not considered the standard of care in burn resuscitation.

Current burn resuscitation practices are not evidence based,¹⁰¹ but morbidity related to excessive soft tissue edema associated with burn resuscitation is widely acknowledged.^{92,102} Three percent hypertonic saline was advocated in the 1970s to address this issue,^{103,104} but its use has been abandoned because of associated technical difficulties.¹⁰⁵ Initial administration of 7.5% salinedextran solution has been explored with cautiously encouraging initial results.¹⁰⁶ The concept of oxygen delivery limited resuscitation and the potential benefit of hyperdynamic resuscitation guided by pulmonary artery catheter has been advocated, but not generally adopted.^{107,108}

Colloid is not advocated during the first 24 hours after injury by most formulae because it has been feared that the administered colloid will leak out into the interstitium.¹⁰⁹ Although criticized for methodologic problems,¹¹⁰ a metaanalysis of albumin use in critical illness suggested no benefit.^{111,112} But many practitioners administer 5% human albumin during the first post-injury hours in patients with very large burns in whom massive crystalloid volume is otherwise needed,¹¹³ even while tolerating low serum albumin levels in the post-resuscitation period.^{114,115} The role of colloid in fluid resuscitation is an important area needing quality prospective investigation.

Monitoring the adequacy of fluid resuscitation is generally done by observing blood pressure, pulse, and urine output.¹¹⁶ Pulmonary artery catheters have less benefit than previously thought, even in elderly high-risk patients¹¹⁷ and are generally reserved for exceptional cases. Intrathoracic blood volume¹¹⁸ and thermodilution¹¹⁹ have been investigated recently, with encouraging preliminary results. The ultimate goal of burn resuscitation is tissue oxygen delivery, and several direct tissue oxygenation monitoring techniques are being developed. Near infrared spectroscopy¹²⁰ and direct tissue oxygen measurements¹²¹ have been looked at, again with cautiously encouraging initial results. Further data are awaited.

Patients with large burns, particularly those in whom

resuscitation has been delayed, are at risk for abdominal compartment syndrome.122-124 This presents with increasing abdominal distention, decreasing urine output, hypotension, and worsening pulmonary compliance. Diagnosis is by serial examination supported by a bladder pressure over 25 mmHg. Although more common in multiple-trauma patients, it is increasingly described in patients with serious burns, particularly in those in whom resuscitation has been delayed. Treatment is by decompressive laparotomy with temporary abdominal closure using a variety of prosthetic materials.¹²⁵ Subsequent abdominal closure is accomplished after visceral edema has resolved. Burns of the abdominal wall can make this a technically challenging exercise, sometimes requiring component release of the abdominal wall for closure.¹²⁶ In some cases, large amounts of intraperitoneal fluid are the cause of abdominal compartment syndrome, and simply tapping this can improve the situation enough to avoid laparotomy.¹²⁷

Unique burn critical care issues

Seriously burned individuals can only recover with definitive wound closure. They can be sustained through wound closure only with sophisticated critical care. Most burn programs have embedded intensive care units designed for the unique needs of burn patients,³⁴ and increasingly sophisticated critical care capabilities are an expected part of burn programs. Although many maneuvers are neither new nor unique to burn patients, some are, and these will be discussed now.

Deep venous thrombosis and thromboembolic complications were thought to be rare in burn patients in the past,128,129 despite protracted immobility, hypercoagulability, and common need for femoral vascular access. Routine prophylaxis of deep venous thrombosis was not justified.¹³⁰ This supposition is coming into question with the advent of higher index of suspicion prompted by experience with trauma patients,131 and the increasing availability of portable ultrasonic screening methods.¹³² Several authors have described a higher incidence of thrombotic complications in burn patients than previously reported.¹³³⁻¹³⁵ Currently, there is no consensus on the advisability or technique of routine thrombosis prophylaxis in burn patients. But some form of prophylaxis is increasingly being prescribed for adult burn patients during periods of protracted critical illness or immobility, including selective use of vena cava filters in

J Am Coll Surg

very high risk patients.¹³⁶ This is an area ready for a quality prospective study.

Tight control of serum glucose in the critically ill has been associated with a reduced incidence of infectious complications and enhanced survival.^{137,138} Although it is not clear if this effect will be seen in burn patients, tighter glucose control is being practiced more commonly. Tight glucose control is not without risk; interruption of glucose administration during the high-dose insulin infusions typically required by burn patients poses some risk of hypoglycemia.¹³⁹ This may be moderated by adherence to insulin protocols.¹⁴⁰ This is another area of burn critical care ripe for quality study.

Maintenance of serum albumin levels in the postresuscitation period has been debated for many years. Albumin production is decreased in the hypermetabolic patient.^{141,142} Quite low serum albumin concentrations are well tolerated, probably because the overproduction of acute phase proteins maintains colloid oncotic pressure.¹¹⁵ A 1998 metaanalysis suggested albumin administration may be harmful, but these data are relatively flawed and the conclusions are unlikely to apply to very sick burn patients with profound hypoalbuminemia.¹¹¹ The bulk of opinion supports maintenance of serum albumin concentrations at least above 1.0 g/dL, and higher in the face of enteral feeding intolerance or pulmonary dysfunction.

Recombinant Activated Protein C (r-APC) is now available and data suggest it may have some benefit in selected patients with systemic sepsis and sudden organ failures.¹⁴³ It should be used judiciously because it is expensive and associated with potential bleeding complications.¹⁴⁴ In properly selected patients, it is probably cost effective.¹⁴⁵ Data in burn patients are only anecdotal, but r-APC seems unlikely to be generally useful in this population with relatively chronic organ dysfunctions and large wounds.

Burn surgery has been a bloody business historically, but this has changed dramatically in recent years.¹⁴⁶ Increasing efforts have been made to minimize exposure to blood products. Transfusion practices still vary between programs to some extent, but are becoming more consistent as the rate of blood loss, particularly in the operating room, becomes more controlled.¹⁴⁷ Transfusion practices in burns are an area where more research is needed.

Topical agents play an important adjunctive role in

burn care. There are an increasing number of agents available. The major agents used for patients with larger injures remain silver sulfadiazene, aqueous 0.5% nitrate, and 11.1% mafenide acetate cream. A 5% aqueous mafenide acetate preparation is now widely available, after limited use for many years.¹⁴⁸⁻¹⁵¹ Like the 11.1% cream, it is particularly useful against resistant Pseudomonas species, but is also a strong carbonic anhydrase inhibitor, making it difficult to use in patients with respiratory failure being managed with permissive hypercapia.¹⁶ Its use also may predispose to fungal growth.¹⁵² It has an important role in wounds colonized or infected with resistant gram-negative species. Innovative nonpharmacologic wound therapies, such as antimicrobial peptides,¹⁵³ are being actively explored, as are a number of recently available silver-releasing membranes.154-156

The role of tracheostomy in burn intensive care remains unclear. This issue has been debated for more than 30 years¹⁵⁷ and remains unresolved, with recent publications urging both aggressive^{158,159} and conservative^{160,161} approaches. Given the higher incidence of clinically important airway morbidity in young children after tracheostomy, an individualized approach is advised.

Inhalation injury and respiratory failure

Inhalation injury remains a major cause of morbidity, prolonged ICU and hospital length of stay, and mortality in burn patients.¹⁶² A large variety of toxic substances are inhaled, generally products of incomplete combustion attached to smoke particles. Burning composite materials are replete with potential toxins.¹⁶³ Very fine smoke particles will result in an alveolar injury; coarse smoke will deposit primarily in the upper tracheobronchial tree. Injury pattern will differ with the type of smoke and variety of toxins inhaled. In most patients, early problems consist primarily of upper airway edema and bronchospasm; initial chest radiographs are generally normal.¹⁶⁴⁻¹⁶⁶ In the days that follow, the injured endobroncial epithelium will slough to a variable extent, resulting in diffuse small airway obstruction. Very distal injuries will cause alveolar flooding and derecruitment.

Diagnosis of inhalation injury remains a clinical guess, despite efforts to develop tools to measure its presence and severity and thereby compare therapies and predict outcomes. Diagnostic tools have included bronchoscopy, bronchoalveolar lavage, technitium scanning, and a variety of serum tests.^{164,167-172} None has proved able to stratify the severity of subsequent clinical course. Intriguing early animal work with CT to stratify injury severity during initial evaluation awaits clinical confirmation.¹⁷³ The increased need for resuscitation fluid caused by inhalation injury has now been roughly quantitated as 30 mL/kg.¹⁷⁴

The 1980s were called a "decade without progress" in inhalation injury management.¹⁷⁵ But more recently, there have been additional alternatives, if not real progress, available for inhalation injury management.¹⁷⁶ Active animal projects are exploring a number of potential therapeutic strategies. Ketorolac has been shown to attenuate mircovascular changes after inhalation injury in sheep.¹⁷⁷ Surfactant and partial liquid ventilation with perflubron have shown efficacy in a piglet model of inhalation injury.¹⁷⁸ Perflubron partial liquid ventilation, although conceptually ideal for improved pulmonary toilet and mechanical recruitment needs of inhalation injury patients,179 was ineffective in a swine model of inhalation injury.¹⁸⁰ Nebulized dimethyl sulfoxide improved inhalation injury physiology in a sheep model.181,182 Nitric oxide synthase inhibition reduced pulmonary dysfunction after inhalation injury in sheep,¹⁸³ as did poly (ADP ribose) synthetase inhibition,¹⁸⁴ although P-selectin blockade did not.185 Nebulized heparin has been investigated in sheep with inhalation injury, with recent studies showing no benefit,186,187 although an earlier study had suggested utility,¹⁸⁸ and antithrombin-3 attenuated pulmonary inflammation and improved function after inhalation injury in sheep.¹⁸⁹

Human trials of inhalation injury salvage techniques have been much more limited. In respiratory failure trials, prone positioning transiently improved oxygenation, but did not impact survival.^{190,191} Use of volumetric diffusive (percussive) ventilation has been reported to improve outcomes in inhalation injury,^{192,193} although other studies have shown improved oxygenation but no change in rates of pneumonia or survival.¹⁹⁴ Inhaled nitric oxide has improved oxygenation in inhalation injury,^{19,20} but outcomes improvement has not been demonstrated. Oscillatory ventilation has been used effectively in young children with primary oxygenation failure, with limited use reported in pediatric inhalation injury.¹⁹⁵ Compared with historic controls, nebulized heparin has benefited inhalation injury patients,196 and confirmatory data are awaited. Extracorporeal support has been reported, but is rarely advised in most burn patients because of associated bleeding complications.^{22,197,198}

Perhaps the only therapy that has shown clear benefit

in human patients with respiratory failure is low-volume ventilation.^{16,18,199} Most patients with inhalation injury who require mechanical ventilation are best managed with a strategy that includes pressure controlled ventilation, which limits inflating pressures and concentrations of oxygen to nonharmful levels and effective pulmonary toilet. Innovative and experimental methods of support are reserved for those few in whom this approach fails.

Carbon monoxide poisoning

Carbon monoxide poisoning is common in burn patients, and the role, if any, of hyperbaric oxygen has been debated for years.²⁰⁰⁻²⁰³ Although serum carboxyhemoglobin is commonly used to track the severity of exposures, CO binds to other heme-containing enzymes and can interfere with oxygen use and delivery. After decades of anecdotal case series, two important prospective trials have recently been published, unfortunately with conflicting results. In a randomized, controlled, doubleblind trial, which included neuropsychologic testing and sham treatments in a multiplace hyperbaric chamber, hyperbaric oxygen did not benefit, and may have worsened, the outcomes of patients with CO poisoning.²⁰⁴ In a second double-blind randomized trial, which included sham chamber treatments and neuropsychiatric testing, cognitive sequelae at 6 weeks were less frequent in the hyperbaric-oxygen group.²⁰⁵ Both articles have been criticized for methodologic flaws, so the role of hyperbaric therapy in CO poisoning remains an open question, and judgment must still be used to decide who should be treated with hyperbaric oxygen. A reasonable compromise is to consider for treatment those with severe CO poisoning (otherwise unexplained loss of consciousness or documented very high carboxyhemoglobin level) who can be safely treated. In a monoplace chamber, this often precludes treatment of hemodynamically tenuous patients or those who are wheezing, febrile, or have thick endobronchial secretions and are at risk of air-trapping and gas embolism.^{206,207} If intubated patients are to be treated, they should undergo myringotomy to eliminate the possibility of tympanic membrane rupture, and endotrachael tube balloons should be filled with saline rather than air.

Nutritional support of hypermetabolism

Postresuscitation physiology is characterized as hypermetabolic, with fever, increased muscle catabolism, and a hyperdynamic circulation.²⁰⁸ Traditionally, this physiology is supported by providing adequate nutrients while the process is truncated through wound closure. Realization that this physiology will continue for some months after wound closure,²⁰⁹ and that there may be adverse consequences of inadequately supported catabolism in some patients,²¹⁰⁻²¹² has led to increasing interest in modifying the physiology, rather than simply supporting it.²¹³ But nutritional support remains the essential cornerstone of management of the hypermetabolic burn patient.

Nutritional targets have remained static in recent years, with most programs striving for protein goals of 2 to 3 grams per kilogram per day and caloric targets of 1.5 times a calculated basal metabolic rate or 1.2 times the resting energy expenditure measured using indirect calorimetry.^{214,215} Glucose is ideally not the only fuel because high levels are not oxidized in this hormonal milieu.²¹⁶ Additionally, adequate amounts of micronutrients and vitamins are essential.²¹⁷

Nutritional support is generally monitored by serial physical examination, urinary nitrogen excretion and nitrogen balance, and indirect calorimetry.²¹⁸ Urinary nitrogen balance is not accurate as a predictor of protein accretion when compared with stable isotopic studies, so monitoring of muscle mass by other means is desired.²¹⁹ Measurement of extracellular water by corrected bromide space has recently been shown to be an accurate way of determining lean body mass in acutely burned patients, and might be a way to track changes in lean body mass.²²⁰ Three-methylhistidine is an amino acid unique to skeletal muscle, and its urinary excretion may be a more accurate alternative to urinary urea nitrogen in tracking muscle catabolism.²²¹

The route of support is ideally enteral, reserving parenteral support for periods of ileus, often induced by sepsis. Most patients tolerate gastric feedings without difficulty,²²² but the postpyloric route is required by some,²²³ although this route is more difficult to monitor and is not without serious potential complications.²²⁴ When properly used for moderate periods, properly administered parenteral nutrition has not been associated with morbidity and can have an important protective effect on lean body mass.²²²

The nonessential amino acids, glutamine and arginine, have critical roles in the burn patient. A significant body of animal data suggests that these may be relatively deficient in the hypermetabolic state.²²⁵ Using stable isotope tracer techniques, this is being evaluated in burn patients.²²⁶ The implications of this work are important, in that certain patients may benefit from supplemental administration of these otherwise nonessential amino acids; clinical data to date have been mixed.²²⁷⁻²²⁹ Multiple projects are looking at infectious and other complications with and without provision of nonessential amino acids, and these data are eagerly awaited. Nutritional support is a complex area with much basic information still missing.²³⁰

Modification of hypermetabolism

Before modern medical care, hypermetabolic physiology probably had survival value because it was so well retained across mammalian species. But it was now widely assumed that certain aspects of this physiology are maladaptive and may actually impair recovery. First among these is muscle catabolism, which has become the principal target of efforts to modify hypermetabolic physiology.

The research group at Galveston has done extensive pioneering work in this area, using a combination of animal models and clinical protocols to evaluate recombinant human growth hormone (r-HGH), insulin, insulin-like growth factor-1 (IGF-1), propranolol, clenbuterol, and oxandrolone, both during acute care and in the months after initial hospital discharge.^{231,232}

The use of r-HGH as a daily intramuscular injection during acute burn care has favorably influenced the hepatic acute phase response,^{233,234} increased IGF-1 expression,²³⁵ decreased tumor necrosis factor expression,²³⁶ improved protein kinetics,²³⁷ maintained growth,²³⁸ prevented intestinal epithelial atrohpy,²³⁹ and decreased donor site healing time by 1.5 days.²⁴⁰ Concerns about safety and longterm scarring have been unfounded, despite unfavorable results in nonburn adult critical illness.²⁴¹⁻²⁴⁴ Administration of r-HGH can be continued in the outpatient setting by self-injection,²⁴⁵ and 1 year of such treatment has been reported to decrease muscle catabolism and osteopenia,²⁴⁶ although vitamin D depletion may have a role in the latter.²¹⁰

Recombinant human growth hormone (r-HGH) can lead to hyperglycemia, which increases mortality,²⁴⁷ but can be well controlled by insulin infusion.²⁴⁸ Insulin infusion prevents muscle catabolism after burn,²⁴⁹ and prolonged euglycemic insulin infusion through acute burn care prevents muscle catabolism and preserves lean body mass.²⁵⁰

A combination of IGF-1 and its binding protein,

IGFBP-3, attenuates muscle catabolism in children with serious burns.²⁵¹ Local IGF-1 gene transfer within wounds decreases inflammatory cytokine expression.²⁵² IGF-1 has a general anabolic effect and improves gut mucosal integrity.^{253,254}

Beta blockade with propranolol has anabolic actions,^{255,256} decreasing cardiac work,²⁵⁷ lowering peripheral lipolysis,²⁵⁸ decreasing extremity blood flow,²⁵⁹ and increasing expression of anabolic substances in the muscle of burned children.²⁶⁰ The beta agonist Clenbuterol improves protein kinetics in burn animal models^{261,262} and in nonburn patients.^{261,263}

Oxandrolone improves lean body mass in burn patients,^{264,265} especially those who were emaciated after delayed treatment;²⁶⁶ these effects are not age dependent.²⁶⁷ Anabolic gene expression in the muscle of burned children was enhanced with oxandrolone treatment.²⁶⁸ When compared with r-HGH, fewer complications were noted with oxandrolone.²⁶⁹ Although anabolic agents can increase lean body mass, exercise is essential to developing strength.²⁷⁰

Our lack of detailed understanding of the cellular and subcellular biology of injury physiology has limited the ability to modify it. But it seems likely that burgeoning research efforts in the molecular mechanisms behind this physiology of injury will lead to an enhanced ability to control it. Notable among these research efforts is the National Institutes of Health—sponsored "Glue Grant" project, in which a diverse group of basic scientists and surgeons have been brought together in an ambitious attempt to describe these molecular mechanisms in human patients. This project, already in multicenter clinical trials involving both burn and trauma patients, is likely to be a landmark contribution leading to major improvements in clinical care of the injured.

Interestingly, early burn wound excision has also recently been shown to favorably influence the hypermetabolic response and reduce catabolism,²⁷¹ confirming earlier work that demonstrated decreased energy needs with early wound excision.²⁷² Prompt wound closure and effective elimination of infection remain a most potent tool to limit the hypermetabolic state.

Burn surgery

At the heart of the improved outcomes in burn patients are changes in the breadth, indications, and techniques of burn surgery, with perhaps the greatest recent change being its breadth. As a field of specialization, burn surgery brings together components of plastic, general, trauma, and pediatric surgery. Operations fall into four general categories: decompression procedues (escharotomies and fasciotomies), excision and closure operations, reconstructive operations, and supportive general surgical procedures (tracheostomy, gastrostomy, cholecystectomy, bronchoscopy, vascular access procedures).

An essential element of excisional surgery is an ability to accurately determine the burn depth or, more importantly, the ability of a burn to heal. Multiple variables influence the ability of a cutaneous burn to heal, including burn depth, skin thickness, anatomic area, density of skin appendages, age, and quality of resuscitation. There is a rich history, spanning several decades, of efforts to develop tools to answer this common clinical question.²⁷³ These efforts have included reflectance of colored light from the burn wound, helium-neon laser Doppler flowmeters to measure microvascular blood flow, thermography, direct temperature measurement, high-resolution ultrasonography, fluorescence of intravenously administered fluoresecein dye with ultraviolet excitation, nonfluorescent intravenous dyes, burn wound biopsy, nuclear magnetic resonance imaging, and fluorescence of intravenously administered indocyanine green dye. Most recently, scanning laser Doppler has been advocated.²⁷⁴ But at present, the eye of an experienced examiner can most accurately integrate the multiple variables that influence the ability of a burn to heal.

A major change in excisional burn surgery in recent years has been a marked reduction in blood loss. Blood product use in burn programs is now as much as 10-fold less than it was 2 decades ago.¹⁴⁸ This has come about largely through adoption of a number of simple operative techniques. Principal among these are subeschar and subcutaneous epinephrine clysis, extremity exsanguination, pneumatic tourniquet use, and maintenance of intraoperative euthermia.²⁷⁵⁻²⁷⁷ Although high-energy carbon dioxide laser ablation of burn eschar has been proposed as a way to reduce bleeding in these patients,^{278,279} progress with simpler techniques has made complex laser use much less attractive.

A practical alternative to staples and suture material for skin graft fixation remains elusive;²⁸⁰⁻²⁸² cyanoacrylic glues have a limited role,²⁸³ as have various fibrin glues.²⁸⁴⁻²⁸⁶

Skin substitutes

Gauze dressings remain the standard of care for temporary cover of partial-thickness burns, and split-thickness autograft remains the standard of care for definitive coverage of full-thickness burns, but both have significant imperfections. There has been a great deal of work done in recent years attempting to address these imperfections through development of a number of membranes designed for temporary and permanent application to wounds.²⁸⁷ This is a rapidly moving area and significant additional changes are likely in the next few years.

Temporary skin substitutes are useful as dressings on donor sites, as coverage of clean superficial wounds, to provide temporary physiologic closure of deeper wounds after excision while awaiting autografting, and occasionally to test the viability of questionable wound beds. Fresh or cryopreserved split-thickness human allograft is the only temporary membrane that vascularizes, and it remains the optimal temporary skin replacement.^{288,289} The risk of viral disease transmission with allograft is minimal, because transplant screening techniques are universally used by tissue banks.^{290,291} Increased regulation by the Food and Drug Administration has led to closure of many single-tissue banks with increased regionalization of these resources into larger multipletissue facilities.²⁹²⁻²⁹⁴

Fresh human amniotic membrane has been extensively used all over the world as a temporary skin substitute.^{295,296} Difficulty screening for viral diseases limits its use in developed countries. Porcine xenograft, or processed porcine dermis, is the only xenograft currently in common use.²⁹⁷ Several single- and double-layer semipermeable synthetic membranes are available as are several hydrocolloid dressings; all are useful, and none has emerged as clearly superior.

To address the common issue of submembrane infection, several silver impregnated membranes or dressings have been developed and marketed.^{154-156,298} Impregnated partially occlusive and hydrofiber dressings are being increasingly used for coverage of burns and other wounds within programs of wound care. Clinical protocols vary widely, but there clearly seems to be a place for well-monitored membrane treatment of partialthickness burns.

There are some laboratory data suggesting that application of growth factors to wounds may improve healing.^{299,300} To date this has been most practically done by applying allogeneic cells rather than isolated growth factors, which are expensive to produce with current techniques. Substances secreted by allogeneic cells, or released upon their dissolution, are thought by many investigators to enhance wound healing. Clinical examples of this concept include allogeneic keratinocytes applied to superficial wounds and donor sites,^{301,302} topical application of recombinant platelet-derived growth factor,³⁰³ cultured keratinocytes and fibroblasts seeded onto opposite sides of a bilaminar bovine collagen matrix,³⁰⁴ and by culture of neonatal fibroblasts into the inner layer of a bilayer skin substitute.³⁰⁵ None has emerged as clearly superior.

During the next few years, it seems probable that we will see greater use of membrane dressings for many wounds, particulaly "active" membranes that either provide antibacterial activity, growth factor activity, or both. With further development of viral transfection techniques, keratinocytes genetically modified to overexpress growth factors may be incorporated into dressings.³⁰⁶⁻³⁰⁹

A reliable permanent skin substitute, most likely an autologous composite, will profoundly change the field of burn care. Several membranes have become available, including epidermal, dermal, and composite substitutes. Although all are useful, none yet meets the need for a reliable composite skin replacement. In the mid 1970s, Rheinwald and Green³¹⁰ developed autologous epithelial cell membranes. These are used clinically, despite suboptimal engraftment and fragility, in patients with massive injuries.^{311,312} The fragility of wounds closed with epithelium led investigators to develop dermal replacements. This has taken three general directions: retention of vascularized allograft through excision of the overlying antigeneic epithelium,313,314 engraftment of acellular dermis,³¹⁵ and incorporation of synthetic dermal analogs.³¹⁶

Integra (Integra LifeSciences Corporation) was initially approved by the US Food and Drug Administration for use in life-threatening burns. The inner layer of this material is a 2-mm thick combination of bovine collagen and chondroitin-6-sulfate, which has a 70- to 200-micrometer pore size to allow fibrovascular ingrowth. The outer layer is 0.009-inch polysiloxane polymer to provide a physiologic vapor barrier. It can be placed on freshly excised full-thickness burns, allowed to vascularize for 2 weeks, and the outer silicone membrane replaced with a thin epithelial autograft. Postmarketing trials of Integra have shown favorable results in highly experienced hands,³¹⁷ but the membrane must be carefully monitored for infectious complications.³¹⁸ It has been used with some success in experienced hands for burn reconstruction.³¹⁹⁻³²¹ Incorporation of epithelial cells by centrifugation has been tried in animals,³²² and, if successful, will potentially eliminate the two operations now required to use this membrane.

Freeze-dried acellular allogenic dermis simultaneously engrafted with a thin epithelial autograft (Allo-Derm, LifeCell Corporation) is another approach to dermal replacement.^{318,323} Clinical experience with this material in acute and reconstructive burn wounds is limited.³²⁴

Presence of both dermal and epidermal elements enhances epithelial maturation and graft performance.³²⁵ Ideally, both dermal and epidermal layers would be provided in an autologous composite. Human fibroblasts cultured into a collagen-glycosaminoglycan membrane with overlying epithelial cells have been successful in animal models.³²⁶⁻³³¹ Exciting clinical trails are in progress with this material. Autologous keratinocytes cultured into acellular allogeneic split-thickness dermis has also been successful in an animal model and in pilot human trials.^{311,332} Addition of fibroblasts into this composite has demonstrated enhanced performance in a nude mouse model.³³³ Maturation of the composite substitute concept will have a profound impact on the acute and reconstructive care of burn patients.

Pain and anxiety management

Tremendous progress has been made in dealing with the inevitable pain and anxiety associated with burn injury and its management.334 Most burn programs have evolved highly specific protocols that provide for objective assessment and specific interventions.³³⁵ Aggressive management of these problems may reduce longterm emotional sequalae.77 Reducing pain associated with burn care has a major positive impact on patient³³⁶ and caregiver³³⁷ experience, and increasing work is being done with assessment and treatment of pain and anxiety in young children with burns.³³⁸ Burn-specific assessment tools have been lacking, a problem that is being actively addressed.³³⁹ The strong synergy between opiates and benzodiazepines has become more widely appreciatated in burn programs,340,341 and although pharmacologic management is the cornerstone of pain control, the efficacy of adjuncts such as hypnosis and

virtual reality are being explored in an objective way.^{342,343}

Hypertrophic scarring

Hypertrophic scarring remains a terrible clinical problem. Hypertrophic scars can be described with a standardized rating system,^{344,345} but understanding the pathophysiology and developing effective treatment strategies have been hindered by the absence of an animal model. Healed wounds typically show involution of neovasculature about 9 weeks after epithelialization.³⁴⁶ Wounds destined to become hypertrophic do not demonstrate this normal physiology, but become increasingly vascular at this time; the physiology behind this clinical observation remains unclear, despite significant new understanding.^{347,348} Recently, successful transplantation of human hypertropic scars onto nude mice has been reported,³⁴⁹ and is hoped that this model can be used to develop innovative treatment strategies.

Current treatment methods are empirically derived and include early wound closure, pressure garments, injectable steroids, topical silicone, and massage regimens.^{350,351} The multiple recommendations for treatment are confusing and are not generally evidence based.³⁵² Recently, judicious use of vascular lasers has been explored,^{353,354} but more work needs to be done before vascular laser treatment can be endorsed.

Pruritis remains a very difficult problem during the first year after injury;355,356 it is thought to involve local release of histamine and other local mediators.³⁵⁷ Traditional treatment strategies have been based on systemic antihistamine treatment.³⁵⁸ Recently, doxepin, an antidepressant with strong antihistamine properties, has been approved for topical use for pruritis,76,359-361 and additional experience with burn pruritis is awaited. Neuropathic pain in scars and healed burns can be a problem in some patients. This can be addressed with a variety of supportive treaments. Occasional patients will benefit from the use of gabapentin, an anticonvulsant thought to stabilize nerves;362 more data would be valuable. Custom clear face masks, using a digital map created by scanning with a helium-neon laser, are new devices that are improvements over older technologies.363

Reconstruction and rehabilitation

The standard of successful burn care is no longer simply survival, but the quality of that survival, which demands a great deal of the burn occupational and physical ther-

apy staff. This staff involvement transcends the entire spectrum of care from the intensive care unit through the outpatient clinic.³⁶⁴ In the critical care setting, rehabilitation priorities include ranging, splinting, and antideformity positioning. These activities will prevent the otherwise inevitable capsular contraction and shortening of tendon and muscle that complicate recovery. Ideally, these activities can be scheduled so they coincide with medications administered for dressing changes.³⁴ As patients are weaned from intensive care, therapy efforts increase markedly. Priorities during this phase are continued passive ranging, increasing active ranging and strengthening, reduction of edema, and preparation for work or school. Resisted range of motion, isometric exercises, active strengthening, and gait training are important objectives. After discharge, rehabilitation priorities include progressive ranging and strengthening, evaluation of evolving problem areas, postoperative therapy after reconstructive operations, and scar management.³⁶⁵ Directed exercise programs may shorten the time to full recovery of preinjury strength.273,366

In the past, burn reconstruction was often delayed until scars were fully mature, and it was often performed by scattered practitioners not associated with the acute burn care team. These factors could lead to significant delays and lack of coordination in performing needed operations, resulting in potentially correctable soft tissue contractures becoming fixed deformities. Current data demonstrate that outcomes quality is enhanced by longterm followup with a multidisciplinary burn program.²⁵ Increasingly, burn reconstruction has become part of the package of comprehensive care offered by burn programs. Functionally limiting deformites are corrected early in recovery, and important esthetic deformities are given a high priority because they may help foster successful reintegration.

In conclusion, despite recent progress, there are a number of important organizational and technical issues that remain in burn care. These include maintenance of the burn workforce, burn center verification, disaster preparedness, maintenance of capillary integrity during resuscitation, restraint of hypermetabolism and muscle catabolism, support of inhalation injury, understanding of molecular biologic changes with injury, and control of scar hypertrophy. Nevertheless, in no other area of trauma care are multidisciplinary teamwork and comprehensive care from injury through recovery so evident as in burns. Although the field is replete with unresolved problems, care of the seriously burned can be incredibly rewarding.

REFERENCES

- 1. Mooney EK. Daniel Drake's account of his own hand burns (1830). Plast Reconstr Surg 1998;102:1748–1754.
- 2. Sheridan RL. Burn care: results of technical and organizational progress. JAMA 2003;290:719–722.
- 3. Cockshott WP. The history of the treatment of burns. Surg Gynecol Obstet 1956;102:116–124.
- Murray JF. The history of analgesia in burns. Postgrad Med J 1972;48:124–127.
- Marshall WG Jr, Dimick AR. The natural history of major burns with multiple subsystem failure. J Trauma 1983;23: 102–105.
- Underhill FP. The significance of anhydremia in extensive superficial burns. JAMA 1930;95:852–857.
- Saffle JR. The 1942 fire at Boston's Cocoanut Grove nightclub. Am J Surg 1993;166:581–591.
- 8. Moore FD. The body-weight burn budget. Basic fluid therapy for the early burn. [Review]. Surg Clin North Am 1970;50: 1249–1265.
- 9. Artz CP, Moncrief JA. The burn problem. In: Artz CP, Moncrief JA, eds. The treatment of burns. Philadelphia: WB Saunders; 1969:1–22.
- Janzekovic Z. A new concept in the early excision and immediate grafting of burns. J Trauma 1970;10:1103–1108.
- Burke JF, Quinby WC Jr, Bondoc CC. Primary excision and prompt grafting as routine therapy for the treatment of thermal burns in children. 1976 [classical article]. Hand Clin 1990;6: 305–317.
- Burke JF, Quinby WC Jr, Bondoc CC. Primary excision and prompt grafting as routine therapy for the treatment of thermal burns in children. Surg Clin North Am 1976;56:477–494.
- **13.** Herndon DN, Gore D, Cole M, et al. Determinants of mortality in pediatric patients with greater than 70% full-thickness total body surface area thermal injury treated by early total excision and grafting. J Trauma 1987;27:208–212.
- 14. Sheridan RL, Remensnyder JP, Schnitzer JJ, et al. Current expectations for survival in pediatric burns. Arch Pediatr Adolesc Med 2000;154:245–249.
- Hollingsed TC, Saffle JR, Barton RG, et al. Etiology and consequences of respiratory failure in thermally injured patients. Am J Surg 1993;166:592–596.
- Sheridan RL, Kacmarek RM, McEttrick MM, et al. Permissive hypercapnia as a ventilatory strategy in burned children: effect on barotrauma, pneumonia, and mortality. J Trauma 1995;39: 854–859.
- Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 1994;22:1568–1578.
- 18. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342:1301–1308.
- Sheridan RL, Hurford WE, Kacmarek RM, et al. Inhaled nitric oxide in burn patients with respiratory failure. J Trauma 1997; 42:629–634.

- 20. Sheridan RL, Zapol WM, Ritz RH, Tompkins RG. Low-dose inhaled nitric oxide in acutely burned children with profound respiratory failure. Surgery 1999;126:856–862.
- 21. Goretsky MJ, Greenhalgh DG, Warden GD, et al. The use of extracorporeal life support in pediatric burn patients with respiratory failure. J Pediatr Surg 1995;30:620–623.
- 22. Kane TD, Greenhalgh DG, Warden GD, et al. Pediatric burn patients with respiratory failure: predictors of outcome with the use of extracorporeal life support. J Burn Care Rehabil 1999;20:145–150.
- Spies M, Herndon DN, Rosenblatt JI, et al. Prediction of mortality from catastrophic burns in children. Lancet 2003;361: 989–994.
- 24. Sheridan RL, Weber JM, Schnitzer JJ, et al. Young age is not a predictor of mortality in burns. Pediatr Crit Care Med 2001; 2:223–224.
- 25. Sheridan RL, Hinson MI, Liang MH, et al. Long-term outcome of children surviving massive burns. JAMA 2000;283: 69–73.
- 26. Sheridan R, Weber J, Prelack K, et al. Early burn center transfer shortens the length of hospitalization and reduces complications in children with serious burn injuries. J Burn Care Rehabil 1999;20:347–350.
- Shackley P, Slack R, Booth A, Michaels J. Is there a positive volume-outcome relationship in peripheral vascular surgery? Results of a systematic review. Eur J Vasc Endovasc Surg 2000; 20:326–335 [Record a.]
- Simunovic M, To T, Theriault M, Langer B. Relation between hospital surgical volume and outcome for pancreatic resection for neoplasm in a publicly funded health care system [see comments]. CMAJ 1999;160:643–648.
- **29.** Glasgow RE, Showstack JA, Katz PP, et al. The relationship between hospital volume and outcomes of hepatic resection for hepatocellular carcinoma. Arch Surg 1999;134:30–35.
- Mullins RJ, Veum-Stone J, Hedges JR, et al. Influence of a statewide trauma system on location of hospitalization and outcome of injured patients. J Trauma 1996;40:536–545; discussion 545–546.
- **31.** Mullins RJ, Veum-Stone J, Helfand M, et al. Outcome of hospitalized injured patients after institution of a trauma system in an urban area. JAMA 1994;271:1919–1924.
- 32. Abernathy JH III, McGwin G Jr, Acker JE III, Rue LW III. Impact of a voluntary trauma system on mortality, length of stay, and cost at a level I trauma center. Am Surg 2002;68:182– 192.
- Sheridan RL. Burns. Crit Care Med 2002;30[11 Suppl]:S500– S514.
- 34. Sheridan RL. Comprehensive treatment of burns. Curr Probl Surg 2001;38:657–756.
- American College of Surgeons—Committee on Trauma. Resources of optimal care of the injured patient. Chicago: American College of Surgeons; 1993.
- Supple KG, Fiala SM, Gamelli RL. Preparation for burn center verification. J Burn Care Rehabil 1997;18[1 Pt 1]:58–60.
- Brigham PA, McGuire A. Progress towards a fire-safe cigarette. J Pub Health Pol 1995;16:433–439.
- Brandt EN Jr, Mayer WN, Mason JO, et al. Designing a national disaster medical system. Public Health Rep 1985;100: 455–461.
- **39.** ABA Practice Guidelines Committee. Practice guidelines for burn care. J Burn Care Rehabil 2001;22:1S–69S.
- 40. Jurkovich T. September 11th—the Pentagon disaster: response

and lessons learned. Crit Care Nurs Clin N Am 2003;15:143–148.

- 41. Briggs SM, Schnitzer JJ. The World Trade Center terrorist attack: changing priorities for surgeons in disaster response. Surgery 2002;132:506–512.
- **42.** Becker WK, Waymack JP, McManus AT, et al. Bashkirian train-gas pipeline disaster: the American military response. Burns 1990;16:325–328.
- Tarnow P, Gewalli F, Cassuto J. Fire disaster in Gothenburg 1998—surgical treatment of burns. Burns 2003;29:417–421.
- 44. Gill JR, Goldfeder LB, Stajic M. The Happy Land homicides: 87 deaths due to smoke inhalation. J Forensic Sci 2003;48: 161–163.
- 45. Sheridan RL, Gagnon SW, Tompkins RG. The burn unit as a resource for the management of acute nonburn conditions in children. J Burn Care Rehabil 1995;16:62–64.
- **46.** Pruitt BA Jr. Burn treatment for the unburned [editorial]. JAMA 1987;257:2207–2208.
- Adzick NS, Kim SH, Bondoc CC, et al. Management of toxic epidermal necrolysis in a pediatric burn center. Am J Dis Children 1985;139:499–502.
- Marvin JA, Heimbach DM, Engrav LH, Harnar TJ. Improved treatment of the Stevens-Johnson syndrome. Arch Surgery 1984;119:601–605.
- Demling RH, Ellerbe S, Lowe NJ. Burn unit management of toxic epidermal necrolysis. Arch Surg 1978;113:758–759.
- Haus C, Paquet P, Marechal-Courtois C. Long-term corneal involvement following drug-induced toxic epidermal necrolysis (Lyell's disease). Ophthalmologica 1993;206:115–118.
- Wilkins J, Morrison L, White CR Jr. Oculocutaneous manifestations of the erythema multiforme/Stevens-Johnson syndrome/toxic epidermal necrolysis spectrum. Dermatol Clin 1992;10:571–582.
- **52.** Palmieri TL, Greenhalgh DG, Saffle JR, et al. A multicenter review of toxic epidermal necrolysis treated in U.S. burn centers at the end of the twentieth century. J Burn Care Rehabil 2002;23:87–96.
- 53. Sheridan RL, Schulz JT, Ryan CM, et al. Long-term consequences of toxic epidermal necrolysis in children. Pediatrics 2002;109:74–78.
- Sheridan RL, Briggs SE, Remensnyder JP, Tompkins RG. Management strategy in purpura fulminans with multiple organ failure in children. Burns 1996;22:53–56.
- Warner PM, Kagan RJ, Yakuboff KP, et al. Current management of purpura fulminans: a multicenter study. J Burn Care Rehabil 2003;24:119–126.
- Efstratiou A, Emery M, Lamagni TL, et al. Increasing incidence of group A streptococcal infections amongst injecting drug users in England and Wales. J Med Microbiol 2003;52: 525–526.
- 57. Rennie RP, Jones RN, Mutnick AH. Occurrence and antimicrobial susceptibility patterns of pathogens isolated from skin and soft tissue infections: report from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 2000). Diagn Microbiol Infect Dis 2003;45:287–293.
- Scalea TM, Trooskin SZ, Wait RB. Critical care training makes trauma care more attractive as a career. J Trauma 1994;36:548– 553.
- **59.** Knuth TE. Trauma fellowship training: the insiders' perspective. J Trauma 1993;35:233–240.
- 60. Taheri PA, Butz DA, Dechert R, Greenfield LJ. How DRGs hurt academic health systems. J Am Coll Surg 2001;193:1–8.

- **61.** Taheri PA, Butz DA, Greenfield LJ. Paying a premium: how patient complexity affects costs and profit margins. Ann Surg 1999;229:807–811.
- **62.** Taheri PA, Wahl WL, Butz DA, et al. Trauma service cost: the real story. Ann Surg 1998;227:720–724.
- 63. Rogers FB, Simons R, Hoyt DB, et al. In-house board-certified surgeons improve outcome for severely injured patients: a comparison of two university centers. J Trauma 1993;34:871–875.
- 64. Van Loey NE, Faber AW, Taal LA. Do burn patients need burn specific multidisciplinary outpatient aftercare: research results. Burns 2001;27:103–110.
- **65.** Larrison RG Jr. Development of an inpatient rehab facility in an urban safety-net hospital. J Healthcare Manag 2003;48: 202–209.
- Caffo E, Belaise C. Psychological aspects of traumatic injury in children and adolescents. Child Adolesc Psychiatr Clin N Am 2003;12:493–535.
- 67. Ehde DM, Patterson DR, Wiechman SA, Wilson LG. Posttraumatic stress symptoms and distress 1 year after burn injury. J Burn Care Rehabil 2000;21:105–111.
- Gilboa D. Long-term psychosocial adjustment after burn injury. Burns 2001;27:335–341.
- **69.** Fauerbach JA, Lawrence J, Haythornthwaite J, et al. Preinjury psychiatric illness and postinjury adjustment in adult burn survivors. Psychosomatics 1996;37:547–555.
- Roca RP, Spence RJ, Munster AM. Posttraumatic adaptation and distress among adult burn survivors [see comments]. Am J Psychiatry 1992;149:1234–1238.
- Difede J, Ptacek JT, Roberts J, et al. Acute stress disorder after burn injury: a predictor of posttraumatic stress disorder? Psychosom Med 2002;64:826–834.
- 72. Saxe G, Chawla N, Stoddard F, et al. Child stress disorders checklist: a measure of ASD and PTSD in children. J Am Acad Child Adolesc Psychiatry 2003;42:972–978.
- **73.** Blaha J, Svobodova K, Kapounkova Z. Therapeutical aspects of using citalopram in burns. Acta Chir Plast 1999;41:25–32.
- Robert R, Blakeney PE, Villarreal C, et al. Imipramine treatment in pediatric burn patients with symptoms of acute stress disorder: a pilot study. J Am Acad Child Adolesc Psychiatry 1999;38:873–882.
- Robert R, Meyer WJ III, Villarreal C, et al. An approach to the timely treatment of acute stress disorder. J Burn Care Rehabil 1999;20:250–258.
- Blake DJ. Treatment of acute posttraumatic stress disorder with tricyclic antidepressants. South Med J 1986;79:201–204.
- Saxe G, Stoddard F, Courtney D, et al. Relationship between acute morphine and the course of PTSD in children with burns. J Am Acad Child Adolesc Psychiatry 2001;40:915–921.
- Ilechukwu ST. Psychiatry of the medically ill in the burn unit. Psychiatr Clin North Am 2002;25:129–147.
- **79.** Fauerbach JA, Richter L, Lawrence JW. Regulating acute posttrauma distress. J Burn Care Rehabil 2002;23:249–257.
- **80.** Konigova R. Factors influencing survival and quality of life in burns. Acta Chirurgiae Plasticae 1996;38:116–118.
- Staley M, Richard R, Warden GD, et al. Functional outcomes for the patient with burn injuries. J Burn Care Rehabil 1996; 17:362–368.
- Malt UF, Ugland OM. A long-term psychosocial follow-up study of burned adults. Acta Psychiatr Scand 1989; 355[Suppl]:94–102.
- **83.** Konigova R. Factors influencing survival and quality of life in burns. Acta Chir Plast 1996;38:116–118.

- 84. Xiao J, Cai BR. Functional and occupational outcome in patients surviving massive burns. Burns 1995;21:415–421.
- Blakeney P, Portman S, Rutan R. Familial values as factors influencing long-term psychological adjustment of children after severe burn injury. J Burn Care Rehabil 1990;11:472– 475.
- 86. Kazis LE, Liang MH, Lee A, et al. The development, validation, and testing of a health outcomes burn questionnaire for infants and children 5 years of age and younger: American Burn Association/Shriners Hospital for Children. J Burn Care Rehabil 2002;23:196–207.
- Dougherty W, Waxman K. The complexities of managing severe burns with associated trauma. Surg Clin N Am 1996;76: 923–958.
- Rosenkranz KM, Sheridan R. Management of the burned trauma patient: balancing conflicting priorities. Burns 2002; 28:665–669.
- **89.** Sheridan R, Peralta R, Rhea J, et al. Reformatted visceral protocol helical computed tomographic scanning allows conventional radiographs of the thoracic and lumbar spine to be eliminated in the evaluation of blunt trauma patients. J Trauma 2003;55:665–669.
- **90.** Youn YK, LaLonde C, Demling R. The role of mediators in the response to thermal injury. World J Surg 1992;16:30–36.
- **91.** Youn YK, LaLonde C, Demling R. Oxidants and the pathophysiology of burn and smoke inhalation injury. Free Radic Biol Med 1992;12:409–415.
- **92.** Kumar P. Fluid resuscitation for burns: a double edge weapon. Burns 2002;28:613–614.
- 93. Cartotto RC, Innes M, Musgrave MA, et al. How well does the Parkland formula estimate actual fluid resuscitation volumes? J Burn Care Rehabil 2002;23:258–265.
- Horton JW. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Toxicology 2003;189:75–88.
- **95.** Peck MD, Alexander JW. Vitamin E supplementation does not improve survival from infection in mice when given after burn injury. J Burn Care Rehabil 1991;12:41–42.
- **96.** Tanaka H, Matsuda H, Shimazaki S, et al. Reduced resuscitation fluid volume for second-degree burns with delayed initiation of ascorbic acid therapy. Arch Surg 1997;132:158–161.
- 97. Sakurai M, Tanaka H, Matsuda T, et al. Reduced resuscitation fluid volume for second-degree experimental burns with delayed initiation of vitamin C therapy (beginning 6 h after injury). J Surg Res 1997;73:24–27.
- Zapata-Sirvent RL, Tenenhaus M, Hansbrough JF, et al. Effects of high-dose vitamin C administration on bacterial translocation and lung neutrophil sequestration in burned mice. J Burn Care Rehabil 1995;16:422–428.
- **99.** Matsuda T, Tanaka H, Reyes HM, et al. Antioxidant therapy using high dose vitamin C: reduction of postburn resuscitation fluid volume requirements. World J Surg 1995;19:287–291.
- 100. Matsuda T, Tanaka H, Shimazaki S, et al. High-dose vitamin C therapy for extensive deep dermal burns. Burns 1992;18: 127–131.
- Holm C. Resuscitation in shock associated with burns. Tradition or evidence-based medicine? Resuscitation 2000;44:157– 164.
- 102. Okabayashi K, Ohtani M, Yamanoue T, et al. The volume limit in fluid resuscitation to prevent respiratory failure in massively burned children without inhalation injury. Hiroshima J Med Sci 2001;50:41–45.

- Monafo WW, Chuntrasakul C, Ayvazian VH. Hypertonic sodium solutions in the treatment of burn shock. Am J Surg 1973;126:778–783.
- 104. Monafo WW Jr, Blanke T, Deitz F. Effectiveness of hypertonic saline solutions in the treatment of murine hemorrhagic shock. Surg Forum 1969;20:42–44.
- 105. Huang PP, Stucky FS, Dimick AR. Hypertonic sodium resuscitation is associated with renal failure and death. Ann Surg 1995;221:543–554; discussion 554–557.
- 106. Murphy JT, Horton JW, Purdue GF, Hunt JL. Cardiovascular effect of 7.5% sodium chloride-dextran infusion after thermal injury. Arch Surg 1999;134:1091–1097.
- 107. Schiller WR, Bay RC, Mclachlan JG, Sagraves SG. Survival in major burn injuries is predicted by early response to Swan-Ganz-guided resuscitation. Am J Surg 1995;170:696–699; discussion 699–700.
- Schiller WR, Bay RC. Hemodynamic and oxygen transport monitoring in management of burns. New Horiz 1996;4:475– 482.
- 109. Warden GD. Burn shock resuscitation. World J Surg 1992;16: 16–23.
- Judkins K. Burns resuscitation: what place albumin? Hosp Med 2000;61:116–119.
- 111. Haynes GR, Navickis RJ, Wilkes MM. Albumin administration—what is the evidence of clinical benefit? A systematic review of randomized controlled trials. Eur J Anaesthesiol 2003;20:771–93.
- 112. Horsey PJ. The Cochrane 1998 Albumin Review—not all it was cracked up to be. Eur J Anaesthesiol 2002;19:701–704.
- 113. Sheridan RL. Burns. Crit Care Med 2002;30[11 Suppl]:S500– S514.
- 114. Greenhalgh DG, Housinger TA, Kagan RJ, et al. Maintenance of serum albumin levels in pediatric burn patients: a prospective, randomized trial. J Trauma 1995;39:67–73; discussion 73–74.
- Sheridan RL, Prelack K, Cunningham JJ. Physiologic hypoalbuminemia is well tolerated by severely burned children. J Trauma 1997;43:448–452.
- Agarwal N, Petro J, Salisbury RE. Physiologic profile monitoring in burned patients. J Trauma 1983;23:577–583.
- 117. Sandham JD, Hull RD, Brant RF, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in highrisk surgical patients. N Engl J Med 2003;348:5–14.
- 118. Holm C, Melcer B, Horbrand F, et al. Intrathoracic blood volume as an end point in resuscitation of the severely burned: an observational study of 24 patients. J Trauma 2000;48:728– 734.
- **119.** Holm C, Melcer B, Horbrand F, et al. Arterial thermodilution: an alternative to pulmonary artery catheter for cardiac output assessment in burn patients. Burns 2001;27:161–166.
- **120.** Sowa MG, Leonardi L, Payette JR, et al. Near infrared spectroscopic assessment of hemodynamic changes in the early postburn period. Burns 2001;27:241–249.
- 121. Venkatesh B, Meacher R, Muller MJ, et al. Monitoring tissue oxygenation during resuscitation of major burns. J Trauma 2001;50:485–494.
- Schein M, Ivatury R. Intra-abdominal hypertension and the abdominal compartment syndrome. Br J Surg 1998;85:1027– 1028.
- 123. Ivy ME, Atweh NA, Palmer J, et al. Intra-abdominal hypertension and abdominal compartment syndrome in burn patients. J Trauma 2000;49:387–391.

- 124. Ivy ME, Possenti PP, Kepros J, et al. Abdominal compartment syndrome in patients with burns. J Burn Care Rehabil 1999; 20:351–353.
- 125. Hobson KG, Young KM, Ciraulo A, et al. Release of abdominal compartment syndrome improves survival in patients with burn injury. J Trauma 2002;53:1129–1133.
- 126. Losanoff JE, Richman BW, Jones JW. Temporary abdominal coverage and abdominal compartment syndrome. Arch Surg 2003;138:565–566.
- 127. Latenser BA, Kowal-Vern A, Kimball D, et al. A pilot study comparing percutaneous decompression with decompressive laparotomy for acute abdominal compartment syndrome in thermal injury. J Burn Care Rehabil 2002;23:190–195.
- Rue LW III, Cioffi WG Jr, Rush R, et al. Thromboembolic complications in thermally injured patients. World J Surg 1992;16:1151–1154.
- 129. Desai MH, Linares HA, Herndon DN. Pulmonary embolism in burned children. Burns 1989;15:376–380.
- Purdue GF, Hunt JL. Pulmonary emboli in burned patients. J Trauma 1988;28:218–220.
- 131. Offner PJ, Hawkes A, Madayag R, Seale F, Maines C. The role of temporary inferior vena cava filters in critically ill surgical patients. Arch Surg 2003;138:591–594.
- 132. Cipolle MD, Wojcik R, Seislove E, et al. The role of surveillance duplex scanning in preventing venous thromboembolism in trauma patients. J Trauma 2002;52:453–462.
- **133.** Wahl WL, Brandt MM, Ahrns KS, et al. Venous thrombosis incidence in burn patients: preliminary results of a prospective study. J Burn Care Rehabil 2002;23:97–102.
- 134. Wahl WL, Brandt MM. Potential risk factors for deep venous thrombosis in burn patients. J Burn Care Rehabil 2001;22: 128–131.
- 135. Harrington DT, Mozingo DW, Cancio L, et al. Thermally injured patients are at significant risk for thromboembolic complications. J Trauma 2001;50:495–499.
- **136.** Still J, Friedman B, Furman S, et al. Experience with the insertion of vena caval filters in acutely burned patients. Am Surg 2000;66:277–279.
- 137. Van den Berghe G, Wouters PJ, Bouillon R, et al. Outcome benefit of intensive insulin therapy in the critically ill: Insulin dose versus glycemic control. Crit Care Med 2003;31:359– 366.
- 138. Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001;345:1359–1367.
- 139. Johan Groeneveld AB, Beishuizen A, Visser FC. Insulin: a wonder drug in the critically ill? Crit Care 2002;6:102–105.
- 140. Chee F, Fernando T, van Heerden PV. Closed-loop glucose control in critically ill patients using continuous glucose monitoring system (CGMS) in real time. IEEE Trans Inf Technol Biomed 2003;7:43–53.
- Burke PA, Drotar M, Luo M, et al. Rapid modulation of liverspecific transcription factors after injury. Surgery 1994;116: 285–292; discussion 292–293.
- 142. Dickson PW, Bannister D, Schreiber G. Minor burns lead to major changes in synthesis rates of plasma proteins in the liver. J Trauma 1987;27:283–286.
- 143. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001;344:699–709.
- 144. Warren HS, Suffredini AF, Eichacker PQ, Munford RS. Risks

and benefits of activated protein C treatment for severe sepsis. N Engl J Med 2002;347:1027–1030.

- 145. Manns BJ, Lee H, Doig CJ, et al. An economic evaluation of activated protein C treatment for severe sepsis. N Engl J Med 2002;347:993–1000.
- 146. Sheridan RL, Szyfelbein SK. Trends in blood conservation in burn care. Burns 2001;27:272–276.
- 147. Sheridan RL, Szyfelbein SK. Staged high-dose epinephrine clysis is safe and effective in layered burn excisions in children. Burns 1999;25:745–748.
- 148. Asch MJ, White MG, Pruitt BA Jr. Acid base changes associated with topical Sulfamylon therapy: retrospective study of 100 burn patients. Ann Surg 1970;172:946–950.
- 149. Curreri PW, Shuck JM, Flemma RJ, et al. Treatment of burn wounds with five per cent aqueous sulfamylon and occlusive dressings. Surg Forum 1969;20:506–507.
- **150.** Lee JJ, Marvin JA, Heimbach DM, Grube BJ. Use of 5% sulfamylon (mafenide) solution after excision and grafting of burns. J Burn Care Rehabil 1988;9:602–605.
- 151. Mendelson JA. The management of burns under conditions of limited resources using topical aqueous sulfamylon (mafenide) hydrochloride spray. J Burn Care Rehabil 1997;18:238–244.
- Levenson C, Wohlford P, Djou J, et al. Preventing postoperative burn wound aspergillosis. J Burn Care Rehabil 1991;12: 132–135.
- 153. Chalekson CP, Neumeister MW, Jaynes J. Treatment of infected wounds with the antimicrobial peptide D2A21. J Trauma 2003;54:770–774.
- 154. Vloemans AF, Soesman AM, Kreis RW, Middelkoop E. A newly developed hydrofibre dressing, in the treatment of partial-thickness burns. Burns 2001;27:167–173.
- 155. Tredget EE, Shankowsky HA, Groeneveld A, Burrell R. A matched-pair, randomized study evaluation the efficacy and safety of Acticoat silver-coated dressing for the treatment of burn wounds. J Burn Care Rehabil 1998;19:531–537.
- 156. Tredget EE, Shankowsky HA, Groeneveld A, Burrell R. A matched-pair, randomized study evaluation the efficacy and safety of Acticoat silver-coated dressing for the treatment of burn wounds. J Burn Care Rehabil 1998;19:531–537.
- 157. Eckhauser FE, Billote J, Burke JF, Quinby WC. Tracheostomy complicating massive burn injury. A plea for conservatism. Am J Surg 1974;127:418–423.
- **158.** Palmieri TL, Jackson W, Greenhalgh DG. Benefits of early tracheostomy in severely burned children. Crit Care Med 2002;30:922–924.
- Barret JP, Desai MH, Herndon DN. Effects of tracheostomies on infection and airway complications in pediatric burn patients. Burns 2000;26:190–193.
- Saffle JR, Morris SE, Edelman L. Early tracheostomy does not improve outcome in burn patients. J Burn Care Rehabil 2002; 23:431–438.
- **161.** Kadillack P, Sheridan R. Prolonged oral intubation is safe in critically ill children. J Burn Care Rehabil 2001;22:S53.
- 162. Ryan CM, Schoenfeld DA, Thorpe WP, et al. Objective estimates of the probability of death from burn injuries [see comments]. N Engl J Med 1998;338:362–366.
- 163. Kimmel EC, Courson DL. Characterization of particulate matter in carbon-graphite/epoxy advanced composite material smoke. AIHA J (Fairfax, VA) 2002;63:413–423.
- 164. Lull RJ, Tatum JL, Sugerman HJ, et al. Radionucleide evaluation of lung trauma [Review] [50 refs]. Semin Nucl Med 1983; 13:223–237.

- Lee MJ, O'Connell DJ. The plain chest radiograph after acute smoke inhalation. Clin Radiol 1988;39:33–37.
- 166. Wittram C, Kenny JB. The admission chest radiograph after acute inhalation injury and burns. Br J Radiol 1994;67:751– 754.
- 167. Lin WY, Kao CH, Wang SJ. Detection of acute inhalation injury in fire victims by means of technetium-99m DTPA radioaerosol inhalation lung scintigraphy. Eur J Nucl Med 1997;24:125–129.
- **168.** Masanes MJ, Legendre C, Lioret N, et al. Using bronchoscopy and biopsy to diagnose early inhalation injury. Macroscopic and histologic findings. Chest 1995;107:1365–1369.
- 169. Moylan JA Jr, Wilmore DW, Mouton DE, Pruitt BA Jr. Early diagnosis of inhalation injury using 133 xenon lung scan. Ann Surg 1972;176:477–484.
- 170. Peitzman AB, Shires GT III, Corbett WA, et al. Measurement of lung water in inhalation injury. Surgery 1981;90:305–312.
- 171. Schall GL, McDonald HD, Carr LB, Capozzi A. Xenon ventilation-perfusion lung scans. The early diagnosis of inhalation injury. JAMA 1978;240:2441–2445.
- 172. O'Neill WJ, Jordan MH, Lewis MS, et al. Serum calcitonin may be a marker for inhalation injury in burns. J Burn Care Rehabil 1992;13:605–616.
- 173. Park MS, Cancio LC, Batchinsky AI, et al. Assessment of severity of ovine smoke inhalation injury by analysis of computed tomographic scans. J Trauma 2003;55:417–427.
- 174. Inoue T, Okabayashi K, Ohtan M, et al. Effect of smoke inhalation injury on fluid requirement in burn resuscitation. Hiroshima J Med Sci 2002;51:1–5.
- 175. Sobel JB, Goldfarb IW, Slater H, Hammell EJ. Inhalation injury: a decade without progress. J Burn Care Rehabil 1992; 13:573–575.
- 176. Sheridan R. Specific therapies for inhalation injury. Crit Care Med 2002;30:718–719.
- 177. Enkhbaatar P, Murakami K, Shimoda K, et al. Ketorolac attenuates cardiopulmonary derangements in sheep with combined burn and smoke inhalation injury. Clin Sci (Lond) 2003; 105:621–628.
- 178. Jeng MJ, Kou YR, Sheu CC, Hwang B. Effects of exogenous surfactant supplementation and partial liquid ventilation on acute lung injury induced by wood smoke inhalation in newborn piglets. Crit Care Med 2003;31:1166–1174.
- 179. Leach CL, Fuhrman BP, Morin FC III, Rath MG. Perfluorocarbon-associated gas exchange (partial liquid ventilation) in respiratory distress syndrome: a prospective, randomized, controlled study [see comments]. Crit Care Med 1993;21:1270–1278.
- 180. Harrington DT, Jordan BS, Dubick MA, et al. Delayed partial liquid ventilation shows no efficacy in the treatment of smoke inhalation injury in swine. J Appl Physiol 2001;90:2351– 2360.
- **181.** Brown M, Desai M, Traber LD, et al. Dimethylsulfoxide with heparin in the treatment of smoke inhalation injury. J Burn Care Rehabil 1988;9:22–25.
- 182. Kimura R, Traber LD, Herndon DN, et al. Treatment of smoke-induced pulmonary injury with nebulized dimethylsulfoxide. Circ Shock 1988;25:333–341.
- 183. Enkhbaatar P, Murakami K, Shimoda K, et al. The inducible nitric oxide synthase inhibitor BBS-2 prevents acute lung injury in sheep after burn and smoke inhalation injury. Am J Respir Crit Care Med 2003;167:1021–1026.
- 184. Shimoda K, Murakami K, Enkhbaatar P, et al. Effect of poly-

(ADP ribose) synthetase inhibition on burn and smoke inhalation injury in sheep. Am J Physiol Lung Cell Mol Physiol 2003;285:L240–249.

Sheridan and Tompkins

- 185. Chandra A, Katahira J, Schmalstieg FC, et al. P-selectin blockade fails to improve acute lung injury in sheep. Clin Sci (Lond) 2003;104:313–321.
- 186. Murakami K, Enkhbaatar P, Shimoda K, et al. High-dose heparin fails to improve acute lung injury following smoke inhalation in sheep. Clin Sci (Lond) 2003;104:349–356.
- 187. Tasaki O, Mozingo DW, Dubick MA, et al. Effects of heparin and lisofylline on pulmonary function after smoke inhalation injury in an ovine model. Crit Care Med 2002;30:637–643.
- **188.** Cox CS Jr, Zwischenberger JB, Traber DL, et al. Heparin improves oxygenation and minimizes barotrauma after severe smoke inhalation in an ovine model. Surg Gynecol Obstet 1993;176:339–349.
- 189. Murakami K, McGuire R, Cox RA, et al. Recombinant antithrombin attenuates pulmonary inflammation following smoke inhalation and pneumonia in sheep. Crit Care Med 2003;31:577–583.
- 190. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568–573.
- 191. Malhotra A, Ayas N, Kacmarek R. Prone positioning of patients in acute respiratory failure. N Engl J Med 2002;346: 295–297.
- **192.** Cioffi WG, Graves TA, McManus WF, Pruitt BA Jr. High-frequency percussive ventilation in patients with inhalation injury. J Trauma 1989;29:350–354.
- **193.** Cioffi WG Jr, Rue LW III, Graves TA, et al. Prophylactic use of high-frequency percussive ventilation in patients with inhalation injury. Ann Surg 1991;213:575–580.
- **194.** Reper P, Wibaux O, Van Laeke P, et al. High frequency percussive ventilation and conventional ventilation after smoke inhalation: a randomised study. Burns 2002;28:503–508.
- **195.** Jackson MP, Philp B, Murdoch LJ, Powell BW. High frequency oscillatory ventilation successfully used to treat a severe paediatric inhalation injury. Burns 2002;28:509–511.
- **196.** Desai MH, Mlcak R, Richardson J, et al. Reduction in mortality in pediatric patients with inhalation injury with aerosolized heparin/acetylcystine therapy. J Burn Care Rehabil 1998; 19:210–212.
- 197. Chou NK, Chen YS, Ko WJ, et al. Application of extracorporeal membrane oxygenation in adult burn patients. Artif Organs 2001;25:622–626.
- 198. Pierre EJ, Zwischenberger JB, Angel C, et al. Extracorporeal membrane oxygenation in the treatment of respiratory failure in pediatric patients with burns. J Burn Care Rehabil 1998;19: 131–134.
- **199.** Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 1990;16:372–377.
- **200.** Grube BJ, Marvin JA, Heimbach DM. Therapeutic hyperbaric oxygen: help or hindrance in burn patients with carbon monoxide poisoning? J Burn Care Rehabil 1988;9:249–252.
- 201. Williams CT. Lectures on the compressed air bath and its uses in the treatment of disease. Br Med J 1885;1:824–936.
- 202. Cunningham OJ. Oxygen therapy by means of compressed air. Anesthesie Analgesie 1927;6:64.
- 203. Myers RA, Snyder SK, Linberg S, Cowley RA. Value of hyper-

baric oxygen in suspected carbon monoxide poisoning. JAMA 1981;246:2478–2480.

- 204. Scheinkestel CD, Bailey M, Myles PS, et al. Hyperbaric or normobaric oxygen for acute carbon monoxide poisoning: a randomised controlled clinical trial [see comments]. Med J Aust 1999;170:203–210.
- 205. Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 2002; 347:1057–1067.
- 206. Sheridan RL, Shank ES. Hyperbaric oxygen treatment: a brief overview of a controversial topic. J Trauma 1999;47:426–435.
- 207. Sloan EP, Murphy DG, Hart R, et al. Complications and protocol considerations in carbon monoxide-poisoned patients who require hyperbaric oxygen therapy: report from a ten-year experience [see comments]. Ann Emerg Med 1989; 18:629–634.
- Souba WW. Cytokine control of nutrition and metabolism in critical illness [Review]. Curr Prob Surg 1994;31:577–643.
- 209. Park GY, Park JW, Jeong DH, Jeong SH. Prolonged airway and systemic inflammatory reactions after smoke inhalation. Chest 2003;123:475–480.
- 210. Klein GL, Langman CB, Herndon DN. Vitamin D depletion following burn injury in children: a possible factor in postburn osteopenia. J Trauma 2002;52:346–350.
- Bentham J, Rodriguez-Arnao J, Ross RJ. Acquired growth hormone resistance in patients with hypercatabolism. Horm Res 1993;40:87–91.
- **212.** Jahoor F, Wolfe RR. Regulation of protein catabolism. Kid Int Suppl 1987;22:S81–93.
- Murphy KD, Lee JO, Herndon DN. Current pharmacotherapy for the treatment of severe burns. Expert Opin Pharmacother 2003;4:369–384.
- Saffle JR, Larson CM, Sullivan J. A randomized trial of indirect calorimetry-based feedings in thermal injury. J Trauma 1990; 30:776–782.
- 215. Prelack K, Cunningham JJ, Sheridan RL, Tompkins RG. Energy and protein provisions for thermally injured children revisited: an outcome-based approach for determining requirements. J Burn Care Rehabil 1997;18:177–181; discussion 176.
- 216. Sheridan RL, Yu YM, Prelack K, et al. Maximal parenteral glucose oxidation in hypermetabolic young children: a stable isotope study [see comments]. JPEN J Parenter Enteral Nutr 1998;22:212–216.
- Prelack K, Sheridan RL. Micronutrient supplementation in the critically ill patient: strategies for clinical practice. J Trauma 2001;51:601–620.
- 218. Saffle JR, Medina E, Raymond J, et al. Use of indirect calorimetry in the nutritional management of burned patients. J Trauma 1985;25:32–39.
- 219. Prelack K, Dwyer J, Yu YM, et al. Urinary urea nitrogen is imprecise as a predictor of protein balance in burned children. J Am Diet Assoc 1997;97:489–495.
- **220.** Prelack K, Sheridan R, Yu YM, et al. Sodium bromide by instrumental neutron activation analysis quantifies change in extracellular water space with wound closure in severely burned children. Surgery 2003;133:396–403.
- 221. Sheridan R. Prelack K, Yu YM, Carter E. 3-methyl histidine metabolism following severe burn injury in children. J Burn Care Rehabil 2002;23:S128.
- 222. Kadillack P, Prelack K, Sheridan R. Gastric tube feedings with

J Am Coll Surg

supplemental parenteral nutrition in children with large burns. J Burn Care Rehabil 1999;20:S248.

- 223. Montecalvo MA, Steger KA, Farber HW, et al. Nutritional outcome and pneumonia in critical care patients randomized to gastric versus jejunal tube feedings. The Critical Care Research Team [see comments]. Crit Care Med 1992;20:1377– 1387.
- 224. Scaife CL, Saffle JR, Morris SE. Intestinal obstruction secondary to enteral feedings in burn trauma patients. J Trauma 1999; 47:859–863.
- 225. Yu YM, Young VR, Castillo L, et al. Plasma arginine and leucine kinetics and urea production rates in burn patients. Metabolism 1995;44:659–666.
- 226. Yu YM, Sheridan RL, Burke JF, et al. Kinetics of plasma arginine and leucine in pediatric burn patients. Am J Clin Nutr 1996;64:60–66.
- 227. Saffle JR, Wiebke G, Jennings K, et al. Randomized trial of immune-enhancing enteral nutrition in burn patients. J Trauma 1997;42:793–800; discussion 800.
- **228.** Garrel D, Patenaude J, Nedelec B, et al. Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med 2003;31:2444–2449.
- 229. Zhou YP, Jiang ZM, Sun YH, et al. The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial. J Parenter Enteral Nutr 2003;27:241–245.
- **230.** Alexander JW. Nutritional pharmacology in surgical patients. Am J Surg 2002;183:349–352.
- 231. Herndon DN. Nutritional and pharmacological support of the metabolic response to injury. Minerva Anestesiol 2003;69: 264–274.
- 232. Murphy KD, Lee JO, Herndon DN. Current pharmacotherapy for the treatment of severe burns. Expert Opin Pharmacother 2003;4:369–384.
- **233.** Jeschke MG, Herndon DN, Wolf SE, et al. Recombinant human growth hormone alters acute phase reactant proteins, cytokine expression, and liver morphology in burned rats. J Surg Res 1999;83:122–129.
- 234. Wu X, Herndon DN, Wolf SE. Growth hormone downregulation of Interleukin-1beta and Interleukin-6 induced acute phase protein gene expression is associated with increased gene expression of suppressor of cytokine signal-3. Shock 2003;19:314–320.
- 235. Jeschke MG, Chrysopoulo MT, Herndon DN, Wolf SE. Increased expression of insulin-like growth factor-I in serum and liver after recombinant human growth hormone administration in thermally injured rats. J Surg Res 1999;85:171–177.
- 236. Chrysopoulo MT, Jeschke MG, Ramirez RJ, et al. Growth hormone attenuates tumor necrosis factor alpha in burned children. Arch Surg 1999;134:283–286.
- 237. Gore DC, Honeycutt D, Jahoor F, et al. Effect of exogenous growth hormone on whole-body and isolated-limb protein kinetics in burned patients. Arch Surg 1991;126:38–43.
- **238.** Aili Low JF, Barrow RE, Mittendorfer B, et al. The effect of short-term growth hormone treatment on growth and energy expenditure in burned children. Burns 2001;27:447–452.
- 239. Lal SO, Wolf SE, Herndon DN. Growth hormone, burns and tissue healing. Growth Horm IGF Res 2000;10[Suppl B]:S39– S43.
- 240. Gilpin DA, Barrow RE, Rutan RL, et al. Recombinant human

growth hormone accelerates wound healing in children with large cutaneous burns. Ann Surg 1994;220:19–24.

- 241. Low JF, Herndon DN, Barrow RE. Effect of growth hormone on growth delay in burned children: a 3-year follow-up study. Lancet 1999;354:1789.
- 242. Ramirez RJ, Wolf SE, Barrow RE, Herndon DN. Growth hormone treatment in pediatric burns: a safe therapeutic approach. Ann Surg 1998;228:439–448.
- 243. Herndon DN, Hawkins HK, Nguyen TT, et al. Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns. Ann Surg 1995;221:649– 656; discussion 656–659.
- 244. Barret JP, Dziewulski P, Jeschke MG, et al. Effects of recombinant human growth hormone on the development of burn scarring. Plast Reconstr Surg 1999;104:726–729.
- 245. Wilkins JP, Suman OE, Benjamin DA, Herndon DN. Comparison of self-reported and monitored compliance of daily injection of human growth hormone in burned children. Burns 2003;29:697–701.
- 246. Hart DW, Herndon DN, Klein G, et al. Attenuation of posttraumatic muscle catabolism and osteopenia by long-term growth hormone therapy. Ann Surg 2001;233:827–834.
- 247. Gore DC, Chinkes D, Heggers J, et al. Association of hyperglycemia with increased mortality after severe burn injury. J Trauma 2001;51:540–544.
- 248. Wolfe RR, Shaw JH, Jahoor F, et al. Response to glucose infusion in humans: role of changes in insulin concentration. Am J Physiol 1986;250:E306–E311.
- 249. Gore DC, Wolf SE, Herndon DN, Wolfe RR. Relative influence of glucose and insulin on peripheral amino acid metabolism in severely burned patients. JPEN J Parenter Enteral Nutr 2002;26:271–277.
- **250.** Thomas SJ, Morimoto K, Herndon DN, et al. The effect of prolonged euglycernic hyperinsulinemia on lean body mass after severe burn. Surgery 2002;132:341–347.
- 251. Herndon DN, Ramzy PI, DebRoy MA, et al. Muscle protein catabolism after severe burn: effects of IGF-1/IGF BP-3 treatment. Ann Surg 1999;229:713–720.
- 252. Spies M, Nesic O, Barrow RE, et al. Liposomal IGF-1 gene transfer modulates pro- and anti-inflammatory cytokine mRNA expression in the burn wound. Gene Ther 2001;8: 1409–1415.
- 253. Moller S, Jensen M, Svensson P, Skakkebaek NE. Insulin-like growth factor 1 (IGF-1) in burn patients. Burns 1991;17:279– 281.
- 254. Huang KF, Chung DH, Herndon DN. Insulinlike growth factor 1 (IGF-1) reduces gut atrophy and bacterial translocation after severe burn injury. Arch Surg 1993;128:47–53.
- 255. Hart DW, Wolf SE, Chinkes DL, et al. Beta-blockade and growth hormone after burn. Ann Surg 2002;236:450–456.
- **256.** Herndon DN, Hart DW, Wolf SE, et al. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 2001; 345:1223–1229.
- 257. Baron PW, Barrow RE, Pierre EJ, Herndon DN. Prolonged use of propranolol safely decreases cardiac work in burned children. J Burn Care Rehabil 1997;18:223–227.
- 258. Aarsland A, Chinkes D, Wolfe RR, et al. Beta-blockade lowers peripheral lipolysis in burn patients receiving growth hormone. Rate of hepatic very low density lipoprotein triglyceride secretion remains unchanged. Ann Surg 1996;223(6):777–787; discussion 787–789.
- 259. Gore DC, Honeycutt D, Jahoor F, et al. Propranolol dimin-

ishes extremity blood flow in burned patients. Ann Surg 1991; 213:568–573.

- 260. Herndon DN, Dasu MR, Wolfe RR, Barrow RE. Gene expression profiles and protein balance in skeletal muscle of burned children after beta-adrenergic blockade. Am J Physiol Endocrinol Metab 2003;285:E783–E789.
- Hollyoak MA, Muller MJ, Meyers NA, et al. Beneficial wound healing and metabolic effects of clenbuterol in burned and nonburned rats. J Burn Care Rehabil 1995;16:233–240.
- 262. Mendenhall CL, Moritz TE, Roselle GA, et al. A study of oral nutritional support with oxandrolone in malnourished patients with alcoholic hepatitis: results of a Department of Veterans Affairs cooperative study investigations on the influence of Clenbuterol and recombinant porcine somatotropin on nitrogen and energy metabolism in growing pigs. Hepatology 1993;45:1–11.
- 263. Martineau L, Little RA, Rothwell NJ, et al. Clenbuterol, a beta 2-adrenergic agonist, reverses muscle wasting due to scald injury in the rat. The acute-phase response of cultured rat hepatocytes. System characterization and the effect of human cytokines. Burns 1984;224:505–514.
- 264. Demling RH, DeSanti L. Oxandrolone, an anabolic steroid, significantly increases the rate of weight gain in the recovery phase after major burns. J Trauma 1997;43:47–51.
- 265. Wolf SE, Thomas SJ, Dasu MR, et al. Improved net protein balance, lean mass, and gene expression changes with oxandrolone treatment in the severely burned. Ann Surg 2003;237: 801–810.
- **266.** Hart DW, Wolf SE, Ramzy PI, et al. Anabolic effects of oxandrolone after severe burn. Ann Surg 2001;233:556–564.
- 267. Demling RH, DeSanti L. The rate of restoration of body weight after burn injury, using the anabolic agent oxandrolone, is not age dependent. Burns 2001;27:46–51.
- 268. Barrow RE, Dasu MR, Ferrando AA, et al. Gene expression patterns in skeletal muscle of thermally injured children treated with oxandrolone. Ann Surg 2003;237:422–428.
- 269. Demling RH. Comparison of the anabolic effects and complications of human growth hormone and the testosterone analog, oxandrolone, after severe burn injury. Burns 1999;25: 215–221.
- 270. Suman OE, Thomas SJ, Wilkins JP, et al. Effect of exogenous growth hormone and exercise on lean mass and muscle function in children with burns. J Appl Physiol 2003;94:2273– 2281.
- 271. Barret JP, Herndon DN. Modulation of inflammatory and catabolic responses in severely burned children by early burn wound excision in the first 24 hours. Arch Surg 2003;138: 127–132.
- 272. Carlson DE, Cioffi WG Jr, Mason AD Jr, et al. Resting energy expenditure in patients with thermal injuries. Surg Gynecol Obstet 1992;174:270–276.
- 273. Heimbach D, Engrav L, Grube B, Marvin J. Burn depth: a review. World J Surg 1992;16:10–15.
- 274. Pape SA, Skouras CA, Byrne PO. An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth. Burns 2001;27:233–239.
- 275. Sheridan RL, Szyfelbein SK. Staged high-dose epinephrine clysis is safe and effective in extensive tangential burn excisions in children. Burns 1999;25:745–748.
- 276. Housinger TA, Lang D, Warden GD. A prospective study of blood loss with excisional therapy in pediatric burn patients. J Trauma 1993;34:262–263.

- 277. Marano MA, O'Sullivan G, Madden M, et al. Tourniquet technique for reduced blood loss and wound assessment during excisions of burn wounds of the extremity. Surg Gynecol Obstet 1990;171:249–250.
- Sheridan RL, Lydon MM, Petras LM, et al. Laser ablation of burns: initial clinical trial. Surgery 1999;125:92–95.
- 279. Glatter RD, Goldberg JS, Schomacker KT, et al. Carbon dioxide laser ablation with immediate autografting in a fullthickness porcine burn model. Ann Surg 1998;228:257–265.
- Pape SA, Hodgkinson P. Retained skin staple. Burns 1994;20: 281.
- 281. Sheridan RL, Petras L, Basha G, Tompkins RG. Clinical experience with the use of biodegradable tacks in pediatric patients with burns. J Burn Care Rehabil 1995;16:143–144.
- Sheridan R, Shapiro A, Kay D, et al. Initial experience with a prototype staple detector. J Burn Care Rehabil 2001;22:232– 234.
- Switzer EF, Dinsmore RC, North JH Jr. Subcuticular closure versus Dermabond: a prospective randomized trial. Am Surg 2003;69:434–436.
- 284. Achauer BM, Miller SR, Lee TE. The hemostatic effect of fibrin glue on graft donor sites. J Burn Care Rehabil 1994;15: 24–28.
- 285. Boeckx W, Vandevoort M, Blondeel P, et al. Fibrin glue in the treatment of dorsal hand burns. Burns 1992;18:395–400.
- 286. Kubo T, Hosokawa K, Haramoto U, et al. A simple technique for fibrin glue application in skin grafting. Plast Reconstr Surg 2000;105:1906–1907.
- 287. Sheridan RL, Tompkins RG. Skin substitutes in burns. Burns 1999;25:97–103.
- 288. Herndon DN. Perspectives in the use of allograft. J Burn Care Rehabil 1997;18:S6.
- Ninnemann JL, Fisher JC, Frank HA. Clinical skin banking: a simplified system for processing, storage, and retrieval of human allografts. J Trauma 1978;18:723–725.
- **290.** Greenleaf G, Hansbrough JF. Current trends in the use of allograft skin for patients with burns and reflections on the future of skin banking in the United States. J Burn Care Rehabil 1994;15:428–431.
- 291. May SR. The future of skin banking [editorial]. J Burn Care Rehabil 1990;11:484–486.
- Kearney JN. Quality issues in skin banking: a review. Burns 1998;24:299–305.
- 293. Sheridan R, Mahe J, Walters P. Autologous skin banking. Burns 1998;24:46–48.
- **294.** Baxter CR. Skin banking in the United States [editorial]. J Burn Care Rehabil 1997;6:322.
- 295. Ramakrishnan KM, Jayaraman V. Management of partialthickness burn wounds by amniotic membrane: a cost-effective treatment in developing countries. Burns 1997;23[Suppl 1]:S33–36.
- **296.** Sawhney CP. Amniotic membrane as a biological dressing in the management of burns [see comments]. Burns 1989;15: 339–342.
- 297. Wang HJ, Chen TM, Cheng TY. Use of a porcine dermis template to enhance widely expanded mesh autologous split-thickness skin graft growth: preliminary report. J Trauma 1997;42:177–182.
- **298.** Ersek RA, Denton DR. Silver-impregnated porcine xenografts for treatment of meshed autografts. Ann Plast Surg 1984;13: 482–487.
- 299. Goretsky MJ, Harriger MD, Supp AP, et al. Expression of

interleukin-1 alpha, interleukin-6, and basic fibroblast growth factor by cultured skin substitutes before and after grafting to full-thickness wounds in athymic mice. J Trauma 1996;40: 894–899; discussion 899.

- 300. Greenhalgh DG. The role of growth factors in wound healing. J Trauma 1996;41:159–167.
- **301.** Phillips TJ, Provan A, Colbert D, Easley KW. A randomized single-blind controlled study of cultured epidermal allografts in the treatment of split-thickness skin graft donor sites. Arch Dermatol 1993;129:879–882.
- Phillips TJ, Gilchrest BA. Cultured epidermal allografts as biological wound dressings. Prog Clin Biol Res 1991;365:77–94.
- 303. Miller MS. Use of topical recombinant human platelet-derived growth factor-BB (becaplermin) in healing of chronic mixed arteriovenous lower extremity diabetic ulcers [see comments]. J Foot Ankle Surg 1999;38:227–231.
- 304. Eaglstein WH, Alvarez OM, Auletta M, et al. Acute excisional wounds treated with a tissue-engineered skin (Apligraf). Dermatol Surg 1999;25:195–201.
- 305. Noordenbos J, Dore C, Hansbrough JF. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehabil 1999;20:275–281.
- 306. Morgan JR, Barrandon Y, Green H, Mulligan RC. Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science 1987;237:1476–1479.
- Morgan JR, Yarmush ML. Bioengineered skin substitutes. Science and Medicine 1997;July/August:6–15.
- Hamoen KE, Erdag G, Cusick JL, et al. Genetically modified skin substitutes. Preparation and use. Methods Mol Med 2002; 69:203–217.
- 309. Eming SA, Medalie DA, Tompkins RG, et al. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft. Hum Gene Ther 1998;9:529–539.
- Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975;6:331–343.
- 311. Gallico GG III, O'Connor NE, Compton CC, et al. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 1984;311:448–451.
- **312.** Sheridan RL, Tompkins RG. Cultured autologous epithelium in patients with burns of ninety percent or more of the body surface. J Trauma 1995;38:48–50.
- Cuono CB, Langdon R, Birchall N, et al. Composite autologous-allogeneic skin replacement: development and clinical application. Plast Reconstruct Surg 1987;80:626–637.
- Cuono C, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1986;1:1123–1124.
- 315. Sheridan R, Choucair R, Donelan M, et al. Acellular allodermis in burns surgery: 1-year results of a pilot trial. J Burn Care Rehabil 1998;19:528–530.
- 316. Heimbach D, Luterman A, Burke J, et al. Artificial dermis for major burns. A multi-center randomized clinical trial. Ann Surg 1988;208:313–320.
- 317. Heimbach DM, Warden GD, Luterman A, et al. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil 2003;24:42–48.
- **318.** Peck MD, Kessler M, Meyer AA, et al. A trial of the effectiveness of artificial dermis in the treatment of patients with burns greater than 45% total body surface area. J Trauma 2002;52: 971–978.

- **319.** Haertsch P. Reconstructive surgery using an artificial dermis (Integra). Br J Plast Surg 2002;55:362–363.
- **320.** Hunt JA, Moisidis E, Haertsch P. Initial experience of Integra in the treatment of post-burn anterior cervical neck contracture. Br J Plast Surg 2000;53:652–658.
- 321. Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg 2001;54:659–664.
- 322. Compton CC, Butler CE, Yannas IV, et al. Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes. J Invest Dermatol 1998; 110:908–916.
- **323.** Wainwright DJ. Use of an acellular allograft dermal matrix (Alloderm) in the management of full-thickness burns. Burns 1995;21:243–248.
- 324. Sheridan RL, Choucair RJ. Acellular allogenic dermis does not hinder initial engraftment in burn wound resurfacing and reconstruction. J Burn Care Rehabil 1997;18:496–499.
- 325. Coulomb B, Lebreton C, Dubertret L. Influence of human dermal fibroblasts on epidermalization. J Invest Dermatol 1989;92:122–125.
- 326. Boyce ST, Kagan RJ, Meyer NA, et al. The 1999 clinical research award. Cultured skin substitutes combined with Integra Artificial Skin to replace native skin autograft and allograft for the closure of excised full-thickness burns. J Burn Care Rehabil 1999;20:453–461.
- 327. Harriger MD, Warden GD, Greenhalgh DG, et al. Pigmentation and microanatomy of skin regenerated from composite grafts of cultured cells and biopolymers applied to fullthickness burn wounds. Transplantation 1995;59:702–707.
- **328.** Boyce ST, Goretsky MJ, Greenhalgh DG, et al. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann Surg 1995; 222:743–752.
- **329.** Boyce ST, Kagan RJ, Yakuboff KP, et al. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann Surg 2002;235:269–279.
- 330. Swope VB, Supp AP, Boyce ST. Regulation of cutaneous pigmentation by titration of human melanocytes in cultured skin substitutes grafted to athymic mice. Wound Repair Regen 2002;10:378–386.
- **331.** Boyce ST. Design principles for composition and performance of cultured skin substitutes. Burns 2001;27:523–533.
- 332. Sheridan R, Morgan JR, Cusick J, et al. Initial experience with an autologous composite skin replacement. J Burn Care Rehabil 2000;21:s214.
- Erdag GSR. Fibroblasts improve performance of cultured composite skin substitutes on athymic mice. Burns 2003 (in press).
- 334. Stoddard FM, Martyn JJ, Sheridan RL. Psychiatric issues in pain of burn injury: controlling pain and improving outcomes. Current Rev Pain 1997;1:130–136.
- 335. Sheridan RL, Hinson M, Nackel A, et al. Development of a pediatric burn pain and anxiety management program. J Burn Care Rehabil 1997;18:455–459; discussion 453–454.
- **336.** Carrougher GJ, Ptacek JT, Sharar SR, et al. Comparison of patient satisfaction and self-reports of pain in adult burn-injured patients. J Burn Care Rehabil 2003;24:1–8.
- 337. Marvin JA, Carrougher G, Bayley E, et al. Burn nursing Delphi study: pain management. J Burn Care Rehabil 1992;13:685– 694.
- **338.** Patterson DR, Ptacek JT, Carrougher G, et al. The 2002 Lindberg Award. PRN vs regularly scheduled opioid analgesics in

pediatric burn patients. J Burn Care Rehabil 2002;23:424-430.

- **339.** Aaron LA, Patterson DR, Finch CP, et al. The utility of a burn specific measure of pain anxiety to prospectively predict pain and function: a comparative analysis. Burns 2001;27:329–334.
- 340. Sheridan RL, McEttrick M, Bacha G, et al. Midazolam infusion in pediatric patients with burns who are undergoing mechanical ventilation. J Burn Care Rehabil 1994;15:515–518.
- Sheridan R, Stoddard F, Querzoli E. Management of background pain and anxiety in critically burned children requiring protracted mechanical ventilation. J Burn Care Rehabil 2001; 22:150–153.
- 342. Ohrbach R, Patterson DR, Carrougher G, Gibran N. Hypnosis after an adverse response to opioids in an ICU burn patient. Clin J Pain 1998;14:167–175.
- 343. Hoffman HG, Patterson DR, Carrougher GJ, Sharar SR. Effectiveness of virtual reality-based pain control with multiple treatments. Clin J Pain 2001;17:229–235.
- 344. Baryza MJ, Baryza GA. The Vancouver Scar Scale: an administration tool and its interrater reliability. J Burn Care Rehabil 1995;16:535–538.
- 345. Nedelec B, Shankowsky HA, Tredget EE. Rating the resolving hypertrophic scar: comparison of the Vancouver Scar Scale and scar volume. J Burn Care Rehabil 2000;21:205–212.
- 346. Kischer CW. The microvessels is hypertrophic scars, keloids and related lesions. J Submicrosc Cytol Path 1992;24:281– 296.
- 347. Wang R, Ghahary A, Shen Q, et al. Hypertrophic scar tissues and fibroblasts produce more transforming growth factorbeta1 mRNA and protein than normal skin and cells. Wound Repair Regen 2000;8:128–137.
- **348.** Tredget EE, Wang R, Shen Q, et al. Transforming growth factor-beta mRNA and protein in hypertrophic scar tissues and fibroblasts: antagonism by IFN-alpha and IFN-gamma in vitro and in vivo. J Interferon Cytokine Res 2000;20:143–151.
- **349.** Sokja ES, Sheridan R, Balis U, Fowler A. Exploration of an animal model for hypertrophic scar formation. Advances in Heat and Mass Transfer in Biotechnology 1999;44:51–55.
- 350. Edwards J. Scar management. Nurs Stand 2003;17:39-42.
- Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations on scar management. Plast Reconstr Surg 2002;110:560–571.

- 352. Bohacek L, Gomez M, Fish JS. An evaluation of internet sites for burn scar management. J Burn Care Rehabil 2003;24:246– 251.
- 353. Widgerow AD, Chait LA, Stals R, Stals PJ. New innovations in scar management. Aesthetic Plast Surg 2000;24:227–234.
- 354. Sheridan RL, MacMillian K, Donelan M, et al. Tunable dye laser neovessel ablation as an adjunct to the management of hypertrophic scarring in burned children: pilot trial to establish safety. J Burn Care Rehabil 1997;18:317–320.
- 355. Chang CW, Ries WR. Nonoperative techniques for scar management and revision. Facial Plast Surg 2001;17:283–288.
- 356. Vitale M, Fields-Blache C, Luterman A. Severe itching in the patient with burns. J Burn Care Rehabil 1991;12:330–333.
- 357. Dunnick CA, Gibran NS, Heimbach DM. Substance P has a role in neurogenic mediation of human burn wound healing. J Burn Care Rehabil 1996;17:390–396.
- 358. Demling RH, DeSanti L. Scar management strategies in wound care. Rehab Manag 2001;14:26–30.
- **359.** Greiding L, Moreno P. Doxepin incorporated into a dermatologic cream: an assessment of both doxepin antipruritic action and doxepin action as an inhibitor of papules, in allergen and histamine-caused pruritus. Allergol Immunopathol (Madr) 1999;27:265–270.
- 360. Millikan LE. Treating pruritus. What's new in safe relief of symptoms? Postgrad Med 1996;99:173–184.
- **361.** Doxepin cream for pruritus. Med Lett Drugs Ther 1994;36: 99–100.
- **362.** Jones DL, Sorkin LS. Systemic gabapentin and S(+)-3isobutyl-gamma-aminobutyric acid block secondary hyperalgesia. Brain Res 1998;810:93–99.
- **363.** Lin JT, Nagler W. Use of surface scanning for creation of transparent facial orthoses. A report of two cases. Burns 2003; 29:599–602.
- 364. Salisbury R. Burn rehabilitation: our unanswered challenge. The 1992 presidential address to the American Burn Association. J Burn Care Rehabili 1992;13:495–505.
- **365.** Pidcock FS, Fauerbach JA, Ober M, Carney J. The rehabilitation/school matrix: a model for accommodating the noncompliant child with severe burns. J Burn Care Rehabil 2003;24:342–346.
- **366.** McElroy K, Alvarado MI, Hayward PG. Exercise stress testing for the pediatric patient with burns: a preliminary report. J Burn Care Rehabil 1992;13:236–238.