1. Assess scene for potential hazards and number of patients

2. Remove patient from the source of carbon monoxide

3. Assess airway and initiate basic and/or advanced airway maneuvers prn *(MCG 1302)*

4. Administer **high flow Oxygen 15 L/min** *(MCG 1302)*

5. Initiate cardiac monitoring prn *(MCG 1308)*
 Perform 12-lead ECG to assess for cardiac ischemia

6. If carbon monoxide monitor available, consider measuring CO level
 Report and document results

7. Establish vascular access prn *(MCG 1375)*

8. For altered level of consciousness, treat in conjunction with *TP 1229, ALOC*

9. Assess for signs of trauma
 For traumatic injury, treat in conjunction with *TP 1244, Traumatic Injury*

10. For poor perfusion:
 - **Normal Saline 1L IV rapid infusion**
 Reassess after each 250mL increment for evidence of volume overload (pulmonary edema); stop infusion if pulmonary edema develops

 For persistent poor perfusion, treat in conjunction with *TP 1207, Shock/Hypotension*

11. For suspected exposure to hazardous materials, treat in conjunction with *TP 1240, HAZMAT*
SPECIAL CONSIDERATIONS

❶ Symptoms of carbon monoxide poisoning include headache, altered level of consciousness, malaise, nausea, dizziness and unresponsiveness. Consider carbon monoxide when multiple persons in same location present with any of these symptoms.

❷ Patients with carbon monoxide poisoning have impaired oxygen delivery and are at high risk for cardiac ischemia.

❸ The measured CO level should not impact the transport decision. It will be helpful for hospital treatment of the exposure.

❹ Exposures to certain chemicals can be associated with carbon monoxide poisoning. For example, methylene chloride (dichloromethane) is an industrial solvent and a component of paint remover. It is metabolized to carbon monoxide by the liver and may cause carbon monoxide toxicity if inhaled or ingested.